FFmpeg  4.4.5
vp3.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2003-2004 The FFmpeg project
3  * Copyright (C) 2019 Peter Ross
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * On2 VP3/VP4 Video Decoder
25  *
26  * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx)
27  * For more information about the VP3 coding process, visit:
28  * http://wiki.multimedia.cx/index.php?title=On2_VP3
29  *
30  * Theora decoder by Alex Beregszaszi
31  */
32 
33 #include <stdio.h>
34 #include <stdlib.h>
35 #include <string.h>
36 
37 #include "libavutil/imgutils.h"
38 #include "libavutil/mem_internal.h"
39 
40 #include "avcodec.h"
41 #include "get_bits.h"
42 #include "hpeldsp.h"
43 #include "internal.h"
44 #include "mathops.h"
45 #include "thread.h"
46 #include "videodsp.h"
47 #include "vp3data.h"
48 #include "vp4data.h"
49 #include "vp3dsp.h"
50 #include "xiph.h"
51 
52 #define VP3_MV_VLC_BITS 6
53 #define VP4_MV_VLC_BITS 6
54 #define SUPERBLOCK_VLC_BITS 6
55 
56 #define FRAGMENT_PIXELS 8
57 
58 // FIXME split things out into their own arrays
59 typedef struct Vp3Fragment {
60  int16_t dc;
63 } Vp3Fragment;
64 
65 #define SB_NOT_CODED 0
66 #define SB_PARTIALLY_CODED 1
67 #define SB_FULLY_CODED 2
68 
69 // This is the maximum length of a single long bit run that can be encoded
70 // for superblock coding or block qps. Theora special-cases this to read a
71 // bit instead of flipping the current bit to allow for runs longer than 4129.
72 #define MAXIMUM_LONG_BIT_RUN 4129
73 
74 #define MODE_INTER_NO_MV 0
75 #define MODE_INTRA 1
76 #define MODE_INTER_PLUS_MV 2
77 #define MODE_INTER_LAST_MV 3
78 #define MODE_INTER_PRIOR_LAST 4
79 #define MODE_USING_GOLDEN 5
80 #define MODE_GOLDEN_MV 6
81 #define MODE_INTER_FOURMV 7
82 #define CODING_MODE_COUNT 8
83 
84 /* special internal mode */
85 #define MODE_COPY 8
86 
89 
90 
91 /* There are 6 preset schemes, plus a free-form scheme */
92 static const int ModeAlphabet[6][CODING_MODE_COUNT] = {
93  /* scheme 1: Last motion vector dominates */
98 
99  /* scheme 2 */
104 
105  /* scheme 3 */
110 
111  /* scheme 4 */
116 
117  /* scheme 5: No motion vector dominates */
122 
123  /* scheme 6 */
128 };
129 
130 static const uint8_t hilbert_offset[16][2] = {
131  { 0, 0 }, { 1, 0 }, { 1, 1 }, { 0, 1 },
132  { 0, 2 }, { 0, 3 }, { 1, 3 }, { 1, 2 },
133  { 2, 2 }, { 2, 3 }, { 3, 3 }, { 3, 2 },
134  { 3, 1 }, { 2, 1 }, { 2, 0 }, { 3, 0 }
135 };
136 
137 enum {
143 };
144 
145 static const uint8_t vp4_pred_block_type_map[8] = {
154 };
155 
156 typedef struct {
157  int dc;
158  int type;
159 } VP4Predictor;
160 
161 #define MIN_DEQUANT_VAL 2
162 
163 typedef struct HuffEntry {
165 } HuffEntry;
166 
167 typedef struct HuffTable {
170 } HuffTable;
171 
172 typedef struct Vp3DecodeContext {
175  int version;
176  int width, height;
181  int keyframe;
187  DECLARE_ALIGNED(16, int16_t, block)[64];
191 
192  int qps[3];
193  int nqps;
194  int last_qps[3];
195 
205  unsigned char *superblock_coding;
206 
207  int macroblock_count; /* y macroblock count */
213  int yuv_macroblock_count; /* y+u+v macroblock count */
214 
218 
221  int data_offset[3];
225 
226  int8_t (*motion_val[2])[2];
227 
228  /* tables */
229  uint16_t coded_dc_scale_factor[2][64];
230  uint32_t coded_ac_scale_factor[64];
233  uint8_t qr_size[2][3][64];
234  uint16_t qr_base[2][3][64];
235 
236  /**
237  * This is a list of all tokens in bitstream order. Reordering takes place
238  * by pulling from each level during IDCT. As a consequence, IDCT must be
239  * in Hilbert order, making the minimum slice height 64 for 4:2:0 and 32
240  * otherwise. The 32 different tokens with up to 12 bits of extradata are
241  * collapsed into 3 types, packed as follows:
242  * (from the low to high bits)
243  *
244  * 2 bits: type (0,1,2)
245  * 0: EOB run, 14 bits for run length (12 needed)
246  * 1: zero run, 7 bits for run length
247  * 7 bits for the next coefficient (3 needed)
248  * 2: coefficient, 14 bits (11 needed)
249  *
250  * Coefficients are signed, so are packed in the highest bits for automatic
251  * sign extension.
252  */
253  int16_t *dct_tokens[3][64];
254  int16_t *dct_tokens_base;
255 #define TOKEN_EOB(eob_run) ((eob_run) << 2)
256 #define TOKEN_ZERO_RUN(coeff, zero_run) (((coeff) * 512) + ((zero_run) << 2) + 1)
257 #define TOKEN_COEFF(coeff) (((coeff) * 4) + 2)
258 
259  /**
260  * number of blocks that contain DCT coefficients at
261  * the given level or higher
262  */
263  int num_coded_frags[3][64];
265 
266  /* this is a list of indexes into the all_fragments array indicating
267  * which of the fragments are coded */
269 
273 
274  /* The first 16 of the following VLCs are for the dc coefficients;
275  the others are four groups of 16 VLCs each for ac coefficients. */
276  VLC coeff_vlc[5 * 16];
277 
278  VLC superblock_run_length_vlc; /* version < 2 */
279  VLC fragment_run_length_vlc; /* version < 2 */
280  VLC block_pattern_vlc[2]; /* version >= 2*/
282  VLC motion_vector_vlc; /* version < 2 */
283  VLC vp4_mv_vlc[2][7]; /* version >=2 */
284 
285  /* these arrays need to be on 16-byte boundaries since SSE2 operations
286  * index into them */
287  DECLARE_ALIGNED(16, int16_t, qmat)[3][2][3][64]; ///< qmat[qpi][is_inter][plane]
288 
289  /* This table contains superblock_count * 16 entries. Each set of 16
290  * numbers corresponds to the fragment indexes 0..15 of the superblock.
291  * An entry will be -1 to indicate that no entry corresponds to that
292  * index. */
294 
295  /* This is an array that indicates how a particular macroblock
296  * is coded. */
297  unsigned char *macroblock_coding;
298 
300 
301  /* Huffman decode */
303 
306 
307  VP4Predictor * dc_pred_row; /* dc_pred_row[y_superblock_width * 4] */
309 
310 /************************************************************************
311  * VP3 specific functions
312  ************************************************************************/
313 
314 static av_cold void free_tables(AVCodecContext *avctx)
315 {
316  Vp3DecodeContext *s = avctx->priv_data;
317 
318  av_freep(&s->superblock_coding);
319  av_freep(&s->all_fragments);
320  av_freep(&s->nkf_coded_fragment_list);
321  av_freep(&s->kf_coded_fragment_list);
322  av_freep(&s->dct_tokens_base);
323  av_freep(&s->superblock_fragments);
324  av_freep(&s->macroblock_coding);
325  av_freep(&s->dc_pred_row);
326  av_freep(&s->motion_val[0]);
327  av_freep(&s->motion_val[1]);
328 }
329 
330 static void vp3_decode_flush(AVCodecContext *avctx)
331 {
332  Vp3DecodeContext *s = avctx->priv_data;
333 
334  if (s->golden_frame.f)
335  ff_thread_release_buffer(avctx, &s->golden_frame);
336  if (s->last_frame.f)
337  ff_thread_release_buffer(avctx, &s->last_frame);
338  if (s->current_frame.f)
339  ff_thread_release_buffer(avctx, &s->current_frame);
340 }
341 
343 {
344  Vp3DecodeContext *s = avctx->priv_data;
345  int i, j;
346 
347  free_tables(avctx);
348  av_freep(&s->edge_emu_buffer);
349 
350  s->theora_tables = 0;
351 
352  /* release all frames */
353  vp3_decode_flush(avctx);
354  av_frame_free(&s->current_frame.f);
355  av_frame_free(&s->last_frame.f);
356  av_frame_free(&s->golden_frame.f);
357 
358  for (i = 0; i < FF_ARRAY_ELEMS(s->coeff_vlc); i++)
359  ff_free_vlc(&s->coeff_vlc[i]);
360 
361  ff_free_vlc(&s->superblock_run_length_vlc);
362  ff_free_vlc(&s->fragment_run_length_vlc);
363  ff_free_vlc(&s->mode_code_vlc);
364  ff_free_vlc(&s->motion_vector_vlc);
365 
366  for (j = 0; j < 2; j++)
367  for (i = 0; i < 7; i++)
368  ff_free_vlc(&s->vp4_mv_vlc[j][i]);
369 
370  for (i = 0; i < 2; i++)
371  ff_free_vlc(&s->block_pattern_vlc[i]);
372  return 0;
373 }
374 
375 /**
376  * This function sets up all of the various blocks mappings:
377  * superblocks <-> fragments, macroblocks <-> fragments,
378  * superblocks <-> macroblocks
379  *
380  * @return 0 is successful; returns 1 if *anything* went wrong.
381  */
383 {
384  int sb_x, sb_y, plane;
385  int x, y, i, j = 0;
386 
387  for (plane = 0; plane < 3; plane++) {
388  int sb_width = plane ? s->c_superblock_width
389  : s->y_superblock_width;
390  int sb_height = plane ? s->c_superblock_height
391  : s->y_superblock_height;
392  int frag_width = s->fragment_width[!!plane];
393  int frag_height = s->fragment_height[!!plane];
394 
395  for (sb_y = 0; sb_y < sb_height; sb_y++)
396  for (sb_x = 0; sb_x < sb_width; sb_x++)
397  for (i = 0; i < 16; i++) {
398  x = 4 * sb_x + hilbert_offset[i][0];
399  y = 4 * sb_y + hilbert_offset[i][1];
400 
401  if (x < frag_width && y < frag_height)
402  s->superblock_fragments[j++] = s->fragment_start[plane] +
403  y * frag_width + x;
404  else
405  s->superblock_fragments[j++] = -1;
406  }
407  }
408 
409  return 0; /* successful path out */
410 }
411 
412 /*
413  * This function sets up the dequantization tables used for a particular
414  * frame.
415  */
416 static void init_dequantizer(Vp3DecodeContext *s, int qpi)
417 {
418  int ac_scale_factor = s->coded_ac_scale_factor[s->qps[qpi]];
419  int i, plane, inter, qri, bmi, bmj, qistart;
420 
421  for (inter = 0; inter < 2; inter++) {
422  for (plane = 0; plane < 3; plane++) {
423  int dc_scale_factor = s->coded_dc_scale_factor[!!plane][s->qps[qpi]];
424  int sum = 0;
425  for (qri = 0; qri < s->qr_count[inter][plane]; qri++) {
426  sum += s->qr_size[inter][plane][qri];
427  if (s->qps[qpi] <= sum)
428  break;
429  }
430  qistart = sum - s->qr_size[inter][plane][qri];
431  bmi = s->qr_base[inter][plane][qri];
432  bmj = s->qr_base[inter][plane][qri + 1];
433  for (i = 0; i < 64; i++) {
434  int coeff = (2 * (sum - s->qps[qpi]) * s->base_matrix[bmi][i] -
435  2 * (qistart - s->qps[qpi]) * s->base_matrix[bmj][i] +
436  s->qr_size[inter][plane][qri]) /
437  (2 * s->qr_size[inter][plane][qri]);
438 
439  int qmin = 8 << (inter + !i);
440  int qscale = i ? ac_scale_factor : dc_scale_factor;
441  int qbias = (1 + inter) * 3;
442  s->qmat[qpi][inter][plane][s->idct_permutation[i]] =
443  (i == 0 || s->version < 2) ? av_clip((qscale * coeff) / 100 * 4, qmin, 4096)
444  : (qscale * (coeff - qbias) / 100 + qbias) * 4;
445  }
446  /* all DC coefficients use the same quant so as not to interfere
447  * with DC prediction */
448  s->qmat[qpi][inter][plane][0] = s->qmat[0][inter][plane][0];
449  }
450  }
451 }
452 
453 /*
454  * This function initializes the loop filter boundary limits if the frame's
455  * quality index is different from the previous frame's.
456  *
457  * The filter_limit_values may not be larger than 127.
458  */
460 {
461  ff_vp3dsp_set_bounding_values(s->bounding_values_array, s->filter_limit_values[s->qps[0]]);
462 }
463 
464 /*
465  * This function unpacks all of the superblock/macroblock/fragment coding
466  * information from the bitstream.
467  */
469 {
470  int superblock_starts[3] = {
471  0, s->u_superblock_start, s->v_superblock_start
472  };
473  int bit = 0;
474  int current_superblock = 0;
475  int current_run = 0;
476  int num_partial_superblocks = 0;
477 
478  int i, j;
479  int current_fragment;
480  int plane;
481  int plane0_num_coded_frags = 0;
482 
483  if (s->keyframe) {
484  memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count);
485  } else {
486  /* unpack the list of partially-coded superblocks */
487  bit = get_bits1(gb) ^ 1;
488  current_run = 0;
489 
490  while (current_superblock < s->superblock_count && get_bits_left(gb) > 0) {
491  if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
492  bit = get_bits1(gb);
493  else
494  bit ^= 1;
495 
496  current_run = get_vlc2(gb, s->superblock_run_length_vlc.table,
498  if (current_run == 34)
499  current_run += get_bits(gb, 12);
500 
501  if (current_run > s->superblock_count - current_superblock) {
502  av_log(s->avctx, AV_LOG_ERROR,
503  "Invalid partially coded superblock run length\n");
504  return -1;
505  }
506 
507  memset(s->superblock_coding + current_superblock, bit, current_run);
508 
509  current_superblock += current_run;
510  if (bit)
511  num_partial_superblocks += current_run;
512  }
513 
514  /* unpack the list of fully coded superblocks if any of the blocks were
515  * not marked as partially coded in the previous step */
516  if (num_partial_superblocks < s->superblock_count) {
517  int superblocks_decoded = 0;
518 
519  current_superblock = 0;
520  bit = get_bits1(gb) ^ 1;
521  current_run = 0;
522 
523  while (superblocks_decoded < s->superblock_count - num_partial_superblocks &&
524  get_bits_left(gb) > 0) {
525  if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
526  bit = get_bits1(gb);
527  else
528  bit ^= 1;
529 
530  current_run = get_vlc2(gb, s->superblock_run_length_vlc.table,
532  if (current_run == 34)
533  current_run += get_bits(gb, 12);
534 
535  for (j = 0; j < current_run; current_superblock++) {
536  if (current_superblock >= s->superblock_count) {
537  av_log(s->avctx, AV_LOG_ERROR,
538  "Invalid fully coded superblock run length\n");
539  return -1;
540  }
541 
542  /* skip any superblocks already marked as partially coded */
543  if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {
544  s->superblock_coding[current_superblock] = 2 * bit;
545  j++;
546  }
547  }
548  superblocks_decoded += current_run;
549  }
550  }
551 
552  /* if there were partial blocks, initialize bitstream for
553  * unpacking fragment codings */
554  if (num_partial_superblocks) {
555  current_run = 0;
556  bit = get_bits1(gb);
557  /* toggle the bit because as soon as the first run length is
558  * fetched the bit will be toggled again */
559  bit ^= 1;
560  }
561  }
562 
563  /* figure out which fragments are coded; iterate through each
564  * superblock (all planes) */
565  s->total_num_coded_frags = 0;
566  memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);
567 
568  s->coded_fragment_list[0] = s->keyframe ? s->kf_coded_fragment_list
569  : s->nkf_coded_fragment_list;
570 
571  for (plane = 0; plane < 3; plane++) {
572  int sb_start = superblock_starts[plane];
573  int sb_end = sb_start + (plane ? s->c_superblock_count
574  : s->y_superblock_count);
575  int num_coded_frags = 0;
576 
577  if (s->keyframe) {
578  if (s->num_kf_coded_fragment[plane] == -1) {
579  for (i = sb_start; i < sb_end; i++) {
580  /* iterate through all 16 fragments in a superblock */
581  for (j = 0; j < 16; j++) {
582  /* if the fragment is in bounds, check its coding status */
583  current_fragment = s->superblock_fragments[i * 16 + j];
584  if (current_fragment != -1) {
585  s->coded_fragment_list[plane][num_coded_frags++] =
586  current_fragment;
587  }
588  }
589  }
590  s->num_kf_coded_fragment[plane] = num_coded_frags;
591  } else
592  num_coded_frags = s->num_kf_coded_fragment[plane];
593  } else {
594  for (i = sb_start; i < sb_end && get_bits_left(gb) > 0; i++) {
595  if (get_bits_left(gb) < plane0_num_coded_frags >> 2) {
596  return AVERROR_INVALIDDATA;
597  }
598  /* iterate through all 16 fragments in a superblock */
599  for (j = 0; j < 16; j++) {
600  /* if the fragment is in bounds, check its coding status */
601  current_fragment = s->superblock_fragments[i * 16 + j];
602  if (current_fragment != -1) {
603  int coded = s->superblock_coding[i];
604 
605  if (coded == SB_PARTIALLY_CODED) {
606  /* fragment may or may not be coded; this is the case
607  * that cares about the fragment coding runs */
608  if (current_run-- == 0) {
609  bit ^= 1;
610  current_run = get_vlc2(gb, s->fragment_run_length_vlc.table, 5, 2);
611  }
612  coded = bit;
613  }
614 
615  if (coded) {
616  /* default mode; actual mode will be decoded in
617  * the next phase */
618  s->all_fragments[current_fragment].coding_method =
620  s->coded_fragment_list[plane][num_coded_frags++] =
621  current_fragment;
622  } else {
623  /* not coded; copy this fragment from the prior frame */
624  s->all_fragments[current_fragment].coding_method =
625  MODE_COPY;
626  }
627  }
628  }
629  }
630  }
631  if (!plane)
632  plane0_num_coded_frags = num_coded_frags;
633  s->total_num_coded_frags += num_coded_frags;
634  for (i = 0; i < 64; i++)
635  s->num_coded_frags[plane][i] = num_coded_frags;
636  if (plane < 2)
637  s->coded_fragment_list[plane + 1] = s->coded_fragment_list[plane] +
638  num_coded_frags;
639  }
640  return 0;
641 }
642 
643 #define BLOCK_X (2 * mb_x + (k & 1))
644 #define BLOCK_Y (2 * mb_y + (k >> 1))
645 
646 #if CONFIG_VP4_DECODER
647 /**
648  * @return number of blocks, or > yuv_macroblock_count on error.
649  * return value is always >= 1.
650  */
651 static int vp4_get_mb_count(Vp3DecodeContext *s, GetBitContext *gb)
652 {
653  int v = 1;
654  int bits;
655  while ((bits = show_bits(gb, 9)) == 0x1ff) {
656  skip_bits(gb, 9);
657  v += 256;
658  if (v > s->yuv_macroblock_count) {
659  av_log(s->avctx, AV_LOG_ERROR, "Invalid run length\n");
660  return v;
661  }
662  }
663 #define body(n) { \
664  skip_bits(gb, 2 + n); \
665  v += (1 << n) + get_bits(gb, n); }
666 #define thresh(n) (0x200 - (0x80 >> n))
667 #define else_if(n) else if (bits < thresh(n)) body(n)
668  if (bits < 0x100) {
669  skip_bits(gb, 1);
670  } else if (bits < thresh(0)) {
671  skip_bits(gb, 2);
672  v += 1;
673  }
674  else_if(1)
675  else_if(2)
676  else_if(3)
677  else_if(4)
678  else_if(5)
679  else_if(6)
680  else body(7)
681 #undef body
682 #undef thresh
683 #undef else_if
684  return v;
685 }
686 
687 static int vp4_get_block_pattern(Vp3DecodeContext *s, GetBitContext *gb, int *next_block_pattern_table)
688 {
689  int v = get_vlc2(gb, s->block_pattern_vlc[*next_block_pattern_table].table, 3, 2);
690  *next_block_pattern_table = vp4_block_pattern_table_selector[v];
691  return v + 1;
692 }
693 
694 static int vp4_unpack_macroblocks(Vp3DecodeContext *s, GetBitContext *gb)
695 {
696  int plane, i, j, k, fragment;
697  int next_block_pattern_table;
698  int bit, current_run, has_partial;
699 
700  memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);
701 
702  if (s->keyframe)
703  return 0;
704 
705  has_partial = 0;
706  bit = get_bits1(gb);
707  for (i = 0; i < s->yuv_macroblock_count; i += current_run) {
708  if (get_bits_left(gb) <= 0)
709  return AVERROR_INVALIDDATA;
710  current_run = vp4_get_mb_count(s, gb);
711  if (current_run > s->yuv_macroblock_count - i)
712  return -1;
713  memset(s->superblock_coding + i, 2 * bit, current_run);
714  bit ^= 1;
715  has_partial |= bit;
716  }
717 
718  if (has_partial) {
719  if (get_bits_left(gb) <= 0)
720  return AVERROR_INVALIDDATA;
721  bit = get_bits1(gb);
722  current_run = vp4_get_mb_count(s, gb);
723  for (i = 0; i < s->yuv_macroblock_count; i++) {
724  if (!s->superblock_coding[i]) {
725  if (!current_run) {
726  bit ^= 1;
727  current_run = vp4_get_mb_count(s, gb);
728  }
729  s->superblock_coding[i] = bit;
730  current_run--;
731  }
732  }
733  if (current_run) /* handle situation when vp4_get_mb_count() fails */
734  return -1;
735  }
736 
737  next_block_pattern_table = 0;
738  i = 0;
739  for (plane = 0; plane < 3; plane++) {
740  int sb_x, sb_y;
741  int sb_width = plane ? s->c_superblock_width : s->y_superblock_width;
742  int sb_height = plane ? s->c_superblock_height : s->y_superblock_height;
743  int mb_width = plane ? s->c_macroblock_width : s->macroblock_width;
744  int mb_height = plane ? s->c_macroblock_height : s->macroblock_height;
745  int fragment_width = s->fragment_width[!!plane];
746  int fragment_height = s->fragment_height[!!plane];
747 
748  for (sb_y = 0; sb_y < sb_height; sb_y++) {
749  for (sb_x = 0; sb_x < sb_width; sb_x++) {
750  for (j = 0; j < 4; j++) {
751  int mb_x = 2 * sb_x + (j >> 1);
752  int mb_y = 2 * sb_y + (j >> 1) ^ (j & 1);
753  int mb_coded, pattern, coded;
754 
755  if (mb_x >= mb_width || mb_y >= mb_height)
756  continue;
757 
758  mb_coded = s->superblock_coding[i++];
759 
760  if (mb_coded == SB_FULLY_CODED)
761  pattern = 0xF;
762  else if (mb_coded == SB_PARTIALLY_CODED)
763  pattern = vp4_get_block_pattern(s, gb, &next_block_pattern_table);
764  else
765  pattern = 0;
766 
767  for (k = 0; k < 4; k++) {
768  if (BLOCK_X >= fragment_width || BLOCK_Y >= fragment_height)
769  continue;
770  fragment = s->fragment_start[plane] + BLOCK_Y * fragment_width + BLOCK_X;
771  coded = pattern & (8 >> k);
772  /* MODE_INTER_NO_MV is the default for coded fragments.
773  the actual method is decoded in the next phase. */
774  s->all_fragments[fragment].coding_method = coded ? MODE_INTER_NO_MV : MODE_COPY;
775  }
776  }
777  }
778  }
779  }
780  return 0;
781 }
782 #endif
783 
784 /*
785  * This function unpacks all the coding mode data for individual macroblocks
786  * from the bitstream.
787  */
789 {
790  int i, j, k, sb_x, sb_y;
791  int scheme;
792  int current_macroblock;
793  int current_fragment;
794  int coding_mode;
795  int custom_mode_alphabet[CODING_MODE_COUNT];
796  const int *alphabet;
797  Vp3Fragment *frag;
798 
799  if (s->keyframe) {
800  for (i = 0; i < s->fragment_count; i++)
801  s->all_fragments[i].coding_method = MODE_INTRA;
802  } else {
803  /* fetch the mode coding scheme for this frame */
804  scheme = get_bits(gb, 3);
805 
806  /* is it a custom coding scheme? */
807  if (scheme == 0) {
808  for (i = 0; i < 8; i++)
809  custom_mode_alphabet[i] = MODE_INTER_NO_MV;
810  for (i = 0; i < 8; i++)
811  custom_mode_alphabet[get_bits(gb, 3)] = i;
812  alphabet = custom_mode_alphabet;
813  } else
814  alphabet = ModeAlphabet[scheme - 1];
815 
816  /* iterate through all of the macroblocks that contain 1 or more
817  * coded fragments */
818  for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
819  for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
820  if (get_bits_left(gb) <= 0)
821  return -1;
822 
823  for (j = 0; j < 4; j++) {
824  int mb_x = 2 * sb_x + (j >> 1);
825  int mb_y = 2 * sb_y + (((j >> 1) + j) & 1);
826  current_macroblock = mb_y * s->macroblock_width + mb_x;
827 
828  if (mb_x >= s->macroblock_width ||
829  mb_y >= s->macroblock_height)
830  continue;
831 
832  /* coding modes are only stored if the macroblock has
833  * at least one luma block coded, otherwise it must be
834  * INTER_NO_MV */
835  for (k = 0; k < 4; k++) {
836  current_fragment = BLOCK_Y *
837  s->fragment_width[0] + BLOCK_X;
838  if (s->all_fragments[current_fragment].coding_method != MODE_COPY)
839  break;
840  }
841  if (k == 4) {
842  s->macroblock_coding[current_macroblock] = MODE_INTER_NO_MV;
843  continue;
844  }
845 
846  /* mode 7 means get 3 bits for each coding mode */
847  if (scheme == 7)
848  coding_mode = get_bits(gb, 3);
849  else
850  coding_mode = alphabet[get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
851 
852  s->macroblock_coding[current_macroblock] = coding_mode;
853  for (k = 0; k < 4; k++) {
854  frag = s->all_fragments + BLOCK_Y * s->fragment_width[0] + BLOCK_X;
855  if (frag->coding_method != MODE_COPY)
856  frag->coding_method = coding_mode;
857  }
858 
859 #define SET_CHROMA_MODES \
860  if (frag[s->fragment_start[1]].coding_method != MODE_COPY) \
861  frag[s->fragment_start[1]].coding_method = coding_mode; \
862  if (frag[s->fragment_start[2]].coding_method != MODE_COPY) \
863  frag[s->fragment_start[2]].coding_method = coding_mode;
864 
865  if (s->chroma_y_shift) {
866  frag = s->all_fragments + mb_y *
867  s->fragment_width[1] + mb_x;
869  } else if (s->chroma_x_shift) {
870  frag = s->all_fragments +
871  2 * mb_y * s->fragment_width[1] + mb_x;
872  for (k = 0; k < 2; k++) {
874  frag += s->fragment_width[1];
875  }
876  } else {
877  for (k = 0; k < 4; k++) {
878  frag = s->all_fragments +
879  BLOCK_Y * s->fragment_width[1] + BLOCK_X;
881  }
882  }
883  }
884  }
885  }
886  }
887 
888  return 0;
889 }
890 
891 static int vp4_get_mv(Vp3DecodeContext *s, GetBitContext *gb, int axis, int last_motion)
892 {
893  int v = get_vlc2(gb, s->vp4_mv_vlc[axis][vp4_mv_table_selector[FFABS(last_motion)]].table,
894  VP4_MV_VLC_BITS, 2);
895  return last_motion < 0 ? -v : v;
896 }
897 
898 /*
899  * This function unpacks all the motion vectors for the individual
900  * macroblocks from the bitstream.
901  */
903 {
904  int j, k, sb_x, sb_y;
905  int coding_mode;
906  int motion_x[4];
907  int motion_y[4];
908  int last_motion_x = 0;
909  int last_motion_y = 0;
910  int prior_last_motion_x = 0;
911  int prior_last_motion_y = 0;
912  int last_gold_motion_x = 0;
913  int last_gold_motion_y = 0;
914  int current_macroblock;
915  int current_fragment;
916  int frag;
917 
918  if (s->keyframe)
919  return 0;
920 
921  /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme; 2 is VP4 code scheme */
922  coding_mode = s->version < 2 ? get_bits1(gb) : 2;
923 
924  /* iterate through all of the macroblocks that contain 1 or more
925  * coded fragments */
926  for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
927  for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
928  if (get_bits_left(gb) <= 0)
929  return -1;
930 
931  for (j = 0; j < 4; j++) {
932  int mb_x = 2 * sb_x + (j >> 1);
933  int mb_y = 2 * sb_y + (((j >> 1) + j) & 1);
934  current_macroblock = mb_y * s->macroblock_width + mb_x;
935 
936  if (mb_x >= s->macroblock_width ||
937  mb_y >= s->macroblock_height ||
938  s->macroblock_coding[current_macroblock] == MODE_COPY)
939  continue;
940 
941  switch (s->macroblock_coding[current_macroblock]) {
942  case MODE_GOLDEN_MV:
943  if (coding_mode == 2) { /* VP4 */
944  last_gold_motion_x = motion_x[0] = vp4_get_mv(s, gb, 0, last_gold_motion_x);
945  last_gold_motion_y = motion_y[0] = vp4_get_mv(s, gb, 1, last_gold_motion_y);
946  break;
947  } /* otherwise fall through */
948  case MODE_INTER_PLUS_MV:
949  /* all 6 fragments use the same motion vector */
950  if (coding_mode == 0) {
951  motion_x[0] = get_vlc2(gb, s->motion_vector_vlc.table,
952  VP3_MV_VLC_BITS, 2);
953  motion_y[0] = get_vlc2(gb, s->motion_vector_vlc.table,
954  VP3_MV_VLC_BITS, 2);
955  } else if (coding_mode == 1) {
956  motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)];
957  motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)];
958  } else { /* VP4 */
959  motion_x[0] = vp4_get_mv(s, gb, 0, last_motion_x);
960  motion_y[0] = vp4_get_mv(s, gb, 1, last_motion_y);
961  }
962 
963  /* vector maintenance, only on MODE_INTER_PLUS_MV */
964  if (s->macroblock_coding[current_macroblock] == MODE_INTER_PLUS_MV) {
965  prior_last_motion_x = last_motion_x;
966  prior_last_motion_y = last_motion_y;
967  last_motion_x = motion_x[0];
968  last_motion_y = motion_y[0];
969  }
970  break;
971 
972  case MODE_INTER_FOURMV:
973  /* vector maintenance */
974  prior_last_motion_x = last_motion_x;
975  prior_last_motion_y = last_motion_y;
976 
977  /* fetch 4 vectors from the bitstream, one for each
978  * Y fragment, then average for the C fragment vectors */
979  for (k = 0; k < 4; k++) {
980  current_fragment = BLOCK_Y * s->fragment_width[0] + BLOCK_X;
981  if (s->all_fragments[current_fragment].coding_method != MODE_COPY) {
982  if (coding_mode == 0) {
983  motion_x[k] = get_vlc2(gb, s->motion_vector_vlc.table,
984  VP3_MV_VLC_BITS, 2);
985  motion_y[k] = get_vlc2(gb, s->motion_vector_vlc.table,
986  VP3_MV_VLC_BITS, 2);
987  } else if (coding_mode == 1) {
988  motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)];
989  motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)];
990  } else { /* VP4 */
991  motion_x[k] = vp4_get_mv(s, gb, 0, prior_last_motion_x);
992  motion_y[k] = vp4_get_mv(s, gb, 1, prior_last_motion_y);
993  }
994  last_motion_x = motion_x[k];
995  last_motion_y = motion_y[k];
996  } else {
997  motion_x[k] = 0;
998  motion_y[k] = 0;
999  }
1000  }
1001  break;
1002 
1003  case MODE_INTER_LAST_MV:
1004  /* all 6 fragments use the last motion vector */
1005  motion_x[0] = last_motion_x;
1006  motion_y[0] = last_motion_y;
1007 
1008  /* no vector maintenance (last vector remains the
1009  * last vector) */
1010  break;
1011 
1012  case MODE_INTER_PRIOR_LAST:
1013  /* all 6 fragments use the motion vector prior to the
1014  * last motion vector */
1015  motion_x[0] = prior_last_motion_x;
1016  motion_y[0] = prior_last_motion_y;
1017 
1018  /* vector maintenance */
1019  prior_last_motion_x = last_motion_x;
1020  prior_last_motion_y = last_motion_y;
1021  last_motion_x = motion_x[0];
1022  last_motion_y = motion_y[0];
1023  break;
1024 
1025  default:
1026  /* covers intra, inter without MV, golden without MV */
1027  motion_x[0] = 0;
1028  motion_y[0] = 0;
1029 
1030  /* no vector maintenance */
1031  break;
1032  }
1033 
1034  /* assign the motion vectors to the correct fragments */
1035  for (k = 0; k < 4; k++) {
1036  current_fragment =
1037  BLOCK_Y * s->fragment_width[0] + BLOCK_X;
1038  if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
1039  s->motion_val[0][current_fragment][0] = motion_x[k];
1040  s->motion_val[0][current_fragment][1] = motion_y[k];
1041  } else {
1042  s->motion_val[0][current_fragment][0] = motion_x[0];
1043  s->motion_val[0][current_fragment][1] = motion_y[0];
1044  }
1045  }
1046 
1047  if (s->chroma_y_shift) {
1048  if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
1049  motion_x[0] = RSHIFT(motion_x[0] + motion_x[1] +
1050  motion_x[2] + motion_x[3], 2);
1051  motion_y[0] = RSHIFT(motion_y[0] + motion_y[1] +
1052  motion_y[2] + motion_y[3], 2);
1053  }
1054  if (s->version <= 2) {
1055  motion_x[0] = (motion_x[0] >> 1) | (motion_x[0] & 1);
1056  motion_y[0] = (motion_y[0] >> 1) | (motion_y[0] & 1);
1057  }
1058  frag = mb_y * s->fragment_width[1] + mb_x;
1059  s->motion_val[1][frag][0] = motion_x[0];
1060  s->motion_val[1][frag][1] = motion_y[0];
1061  } else if (s->chroma_x_shift) {
1062  if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
1063  motion_x[0] = RSHIFT(motion_x[0] + motion_x[1], 1);
1064  motion_y[0] = RSHIFT(motion_y[0] + motion_y[1], 1);
1065  motion_x[1] = RSHIFT(motion_x[2] + motion_x[3], 1);
1066  motion_y[1] = RSHIFT(motion_y[2] + motion_y[3], 1);
1067  } else {
1068  motion_x[1] = motion_x[0];
1069  motion_y[1] = motion_y[0];
1070  }
1071  if (s->version <= 2) {
1072  motion_x[0] = (motion_x[0] >> 1) | (motion_x[0] & 1);
1073  motion_x[1] = (motion_x[1] >> 1) | (motion_x[1] & 1);
1074  }
1075  frag = 2 * mb_y * s->fragment_width[1] + mb_x;
1076  for (k = 0; k < 2; k++) {
1077  s->motion_val[1][frag][0] = motion_x[k];
1078  s->motion_val[1][frag][1] = motion_y[k];
1079  frag += s->fragment_width[1];
1080  }
1081  } else {
1082  for (k = 0; k < 4; k++) {
1083  frag = BLOCK_Y * s->fragment_width[1] + BLOCK_X;
1084  if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
1085  s->motion_val[1][frag][0] = motion_x[k];
1086  s->motion_val[1][frag][1] = motion_y[k];
1087  } else {
1088  s->motion_val[1][frag][0] = motion_x[0];
1089  s->motion_val[1][frag][1] = motion_y[0];
1090  }
1091  }
1092  }
1093  }
1094  }
1095  }
1096 
1097  return 0;
1098 }
1099 
1101 {
1102  int qpi, i, j, bit, run_length, blocks_decoded, num_blocks_at_qpi;
1103  int num_blocks = s->total_num_coded_frags;
1104 
1105  for (qpi = 0; qpi < s->nqps - 1 && num_blocks > 0; qpi++) {
1106  i = blocks_decoded = num_blocks_at_qpi = 0;
1107 
1108  bit = get_bits1(gb) ^ 1;
1109  run_length = 0;
1110 
1111  do {
1112  if (run_length == MAXIMUM_LONG_BIT_RUN)
1113  bit = get_bits1(gb);
1114  else
1115  bit ^= 1;
1116 
1117  run_length = get_vlc2(gb, s->superblock_run_length_vlc.table,
1118  SUPERBLOCK_VLC_BITS, 2);
1119  if (run_length == 34)
1120  run_length += get_bits(gb, 12);
1121  blocks_decoded += run_length;
1122 
1123  if (!bit)
1124  num_blocks_at_qpi += run_length;
1125 
1126  for (j = 0; j < run_length; i++) {
1127  if (i >= s->total_num_coded_frags)
1128  return -1;
1129 
1130  if (s->all_fragments[s->coded_fragment_list[0][i]].qpi == qpi) {
1131  s->all_fragments[s->coded_fragment_list[0][i]].qpi += bit;
1132  j++;
1133  }
1134  }
1135  } while (blocks_decoded < num_blocks && get_bits_left(gb) > 0);
1136 
1137  num_blocks -= num_blocks_at_qpi;
1138  }
1139 
1140  return 0;
1141 }
1142 
1143 static inline int get_eob_run(GetBitContext *gb, int token)
1144 {
1145  int v = eob_run_table[token].base;
1146  if (eob_run_table[token].bits)
1147  v += get_bits(gb, eob_run_table[token].bits);
1148  return v;
1149 }
1150 
1151 static inline int get_coeff(GetBitContext *gb, int token, int16_t *coeff)
1152 {
1153  int bits_to_get, zero_run;
1154 
1155  bits_to_get = coeff_get_bits[token];
1156  if (bits_to_get)
1157  bits_to_get = get_bits(gb, bits_to_get);
1158  *coeff = coeff_tables[token][bits_to_get];
1159 
1160  zero_run = zero_run_base[token];
1161  if (zero_run_get_bits[token])
1162  zero_run += get_bits(gb, zero_run_get_bits[token]);
1163 
1164  return zero_run;
1165 }
1166 
1167 /*
1168  * This function is called by unpack_dct_coeffs() to extract the VLCs from
1169  * the bitstream. The VLCs encode tokens which are used to unpack DCT
1170  * data. This function unpacks all the VLCs for either the Y plane or both
1171  * C planes, and is called for DC coefficients or different AC coefficient
1172  * levels (since different coefficient types require different VLC tables.
1173  *
1174  * This function returns a residual eob run. E.g, if a particular token gave
1175  * instructions to EOB the next 5 fragments and there were only 2 fragments
1176  * left in the current fragment range, 3 would be returned so that it could
1177  * be passed into the next call to this same function.
1178  */
1180  VLC *table, int coeff_index,
1181  int plane,
1182  int eob_run)
1183 {
1184  int i, j = 0;
1185  int token;
1186  int zero_run = 0;
1187  int16_t coeff = 0;
1188  int blocks_ended;
1189  int coeff_i = 0;
1190  int num_coeffs = s->num_coded_frags[plane][coeff_index];
1191  int16_t *dct_tokens = s->dct_tokens[plane][coeff_index];
1192 
1193  /* local references to structure members to avoid repeated dereferences */
1194  int *coded_fragment_list = s->coded_fragment_list[plane];
1195  Vp3Fragment *all_fragments = s->all_fragments;
1196  VLC_TYPE(*vlc_table)[2] = table->table;
1197 
1198  if (num_coeffs < 0) {
1199  av_log(s->avctx, AV_LOG_ERROR,
1200  "Invalid number of coefficients at level %d\n", coeff_index);
1201  return AVERROR_INVALIDDATA;
1202  }
1203 
1204  if (eob_run > num_coeffs) {
1205  coeff_i =
1206  blocks_ended = num_coeffs;
1207  eob_run -= num_coeffs;
1208  } else {
1209  coeff_i =
1210  blocks_ended = eob_run;
1211  eob_run = 0;
1212  }
1213 
1214  // insert fake EOB token to cover the split between planes or zzi
1215  if (blocks_ended)
1216  dct_tokens[j++] = blocks_ended << 2;
1217 
1218  while (coeff_i < num_coeffs && get_bits_left(gb) > 0) {
1219  /* decode a VLC into a token */
1220  token = get_vlc2(gb, vlc_table, 11, 3);
1221  /* use the token to get a zero run, a coefficient, and an eob run */
1222  if ((unsigned) token <= 6U) {
1223  eob_run = get_eob_run(gb, token);
1224  if (!eob_run)
1225  eob_run = INT_MAX;
1226 
1227  // record only the number of blocks ended in this plane,
1228  // any spill will be recorded in the next plane.
1229  if (eob_run > num_coeffs - coeff_i) {
1230  dct_tokens[j++] = TOKEN_EOB(num_coeffs - coeff_i);
1231  blocks_ended += num_coeffs - coeff_i;
1232  eob_run -= num_coeffs - coeff_i;
1233  coeff_i = num_coeffs;
1234  } else {
1235  dct_tokens[j++] = TOKEN_EOB(eob_run);
1236  blocks_ended += eob_run;
1237  coeff_i += eob_run;
1238  eob_run = 0;
1239  }
1240  } else if (token >= 0) {
1241  zero_run = get_coeff(gb, token, &coeff);
1242 
1243  if (zero_run) {
1244  dct_tokens[j++] = TOKEN_ZERO_RUN(coeff, zero_run);
1245  } else {
1246  // Save DC into the fragment structure. DC prediction is
1247  // done in raster order, so the actual DC can't be in with
1248  // other tokens. We still need the token in dct_tokens[]
1249  // however, or else the structure collapses on itself.
1250  if (!coeff_index)
1251  all_fragments[coded_fragment_list[coeff_i]].dc = coeff;
1252 
1253  dct_tokens[j++] = TOKEN_COEFF(coeff);
1254  }
1255 
1256  if (coeff_index + zero_run > 64) {
1257  av_log(s->avctx, AV_LOG_DEBUG,
1258  "Invalid zero run of %d with %d coeffs left\n",
1259  zero_run, 64 - coeff_index);
1260  zero_run = 64 - coeff_index;
1261  }
1262 
1263  // zero runs code multiple coefficients,
1264  // so don't try to decode coeffs for those higher levels
1265  for (i = coeff_index + 1; i <= coeff_index + zero_run; i++)
1266  s->num_coded_frags[plane][i]--;
1267  coeff_i++;
1268  } else {
1269  av_log(s->avctx, AV_LOG_ERROR, "Invalid token %d\n", token);
1270  return -1;
1271  }
1272  }
1273 
1274  if (blocks_ended > s->num_coded_frags[plane][coeff_index])
1275  av_log(s->avctx, AV_LOG_ERROR, "More blocks ended than coded!\n");
1276 
1277  // decrement the number of blocks that have higher coefficients for each
1278  // EOB run at this level
1279  if (blocks_ended)
1280  for (i = coeff_index + 1; i < 64; i++)
1281  s->num_coded_frags[plane][i] -= blocks_ended;
1282 
1283  // setup the next buffer
1284  if (plane < 2)
1285  s->dct_tokens[plane + 1][coeff_index] = dct_tokens + j;
1286  else if (coeff_index < 63)
1287  s->dct_tokens[0][coeff_index + 1] = dct_tokens + j;
1288 
1289  return eob_run;
1290 }
1291 
1293  int first_fragment,
1294  int fragment_width,
1295  int fragment_height);
1296 /*
1297  * This function unpacks all of the DCT coefficient data from the
1298  * bitstream.
1299  */
1301 {
1302  int i;
1303  int dc_y_table;
1304  int dc_c_table;
1305  int ac_y_table;
1306  int ac_c_table;
1307  int residual_eob_run = 0;
1308  VLC *y_tables[64];
1309  VLC *c_tables[64];
1310 
1311  s->dct_tokens[0][0] = s->dct_tokens_base;
1312 
1313  if (get_bits_left(gb) < 16)
1314  return AVERROR_INVALIDDATA;
1315 
1316  /* fetch the DC table indexes */
1317  dc_y_table = get_bits(gb, 4);
1318  dc_c_table = get_bits(gb, 4);
1319 
1320  /* unpack the Y plane DC coefficients */
1321  residual_eob_run = unpack_vlcs(s, gb, &s->coeff_vlc[dc_y_table], 0,
1322  0, residual_eob_run);
1323  if (residual_eob_run < 0)
1324  return residual_eob_run;
1325  if (get_bits_left(gb) < 8)
1326  return AVERROR_INVALIDDATA;
1327 
1328  /* reverse prediction of the Y-plane DC coefficients */
1329  reverse_dc_prediction(s, 0, s->fragment_width[0], s->fragment_height[0]);
1330 
1331  /* unpack the C plane DC coefficients */
1332  residual_eob_run = unpack_vlcs(s, gb, &s->coeff_vlc[dc_c_table], 0,
1333  1, residual_eob_run);
1334  if (residual_eob_run < 0)
1335  return residual_eob_run;
1336  residual_eob_run = unpack_vlcs(s, gb, &s->coeff_vlc[dc_c_table], 0,
1337  2, residual_eob_run);
1338  if (residual_eob_run < 0)
1339  return residual_eob_run;
1340 
1341  /* reverse prediction of the C-plane DC coefficients */
1342  if (!(s->avctx->flags & AV_CODEC_FLAG_GRAY)) {
1343  reverse_dc_prediction(s, s->fragment_start[1],
1344  s->fragment_width[1], s->fragment_height[1]);
1345  reverse_dc_prediction(s, s->fragment_start[2],
1346  s->fragment_width[1], s->fragment_height[1]);
1347  }
1348 
1349  if (get_bits_left(gb) < 8)
1350  return AVERROR_INVALIDDATA;
1351  /* fetch the AC table indexes */
1352  ac_y_table = get_bits(gb, 4);
1353  ac_c_table = get_bits(gb, 4);
1354 
1355  /* build tables of AC VLC tables */
1356  for (i = 1; i <= 5; i++) {
1357  /* AC VLC table group 1 */
1358  y_tables[i] = &s->coeff_vlc[ac_y_table + 16];
1359  c_tables[i] = &s->coeff_vlc[ac_c_table + 16];
1360  }
1361  for (i = 6; i <= 14; i++) {
1362  /* AC VLC table group 2 */
1363  y_tables[i] = &s->coeff_vlc[ac_y_table + 32];
1364  c_tables[i] = &s->coeff_vlc[ac_c_table + 32];
1365  }
1366  for (i = 15; i <= 27; i++) {
1367  /* AC VLC table group 3 */
1368  y_tables[i] = &s->coeff_vlc[ac_y_table + 48];
1369  c_tables[i] = &s->coeff_vlc[ac_c_table + 48];
1370  }
1371  for (i = 28; i <= 63; i++) {
1372  /* AC VLC table group 4 */
1373  y_tables[i] = &s->coeff_vlc[ac_y_table + 64];
1374  c_tables[i] = &s->coeff_vlc[ac_c_table + 64];
1375  }
1376 
1377  /* decode all AC coefficients */
1378  for (i = 1; i <= 63; i++) {
1379  residual_eob_run = unpack_vlcs(s, gb, y_tables[i], i,
1380  0, residual_eob_run);
1381  if (residual_eob_run < 0)
1382  return residual_eob_run;
1383 
1384  residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
1385  1, residual_eob_run);
1386  if (residual_eob_run < 0)
1387  return residual_eob_run;
1388  residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
1389  2, residual_eob_run);
1390  if (residual_eob_run < 0)
1391  return residual_eob_run;
1392  }
1393 
1394  return 0;
1395 }
1396 
1397 #if CONFIG_VP4_DECODER
1398 /**
1399  * eob_tracker[] is instead of TOKEN_EOB(value)
1400  * a dummy TOKEN_EOB(0) value is used to make vp3_dequant work
1401  *
1402  * @return < 0 on error
1403  */
1404 static int vp4_unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
1405  VLC *vlc_tables[64],
1406  int plane, int eob_tracker[64], int fragment)
1407 {
1408  int token;
1409  int zero_run = 0;
1410  int16_t coeff = 0;
1411  int coeff_i = 0;
1412  int eob_run;
1413 
1414  while (!eob_tracker[coeff_i]) {
1415  if (get_bits_left(gb) < 1)
1416  return AVERROR_INVALIDDATA;
1417 
1418  token = get_vlc2(gb, vlc_tables[coeff_i]->table, 11, 3);
1419 
1420  /* use the token to get a zero run, a coefficient, and an eob run */
1421  if ((unsigned) token <= 6U) {
1422  eob_run = get_eob_run(gb, token);
1423  *s->dct_tokens[plane][coeff_i]++ = TOKEN_EOB(0);
1424  eob_tracker[coeff_i] = eob_run - 1;
1425  return 0;
1426  } else if (token >= 0) {
1427  zero_run = get_coeff(gb, token, &coeff);
1428 
1429  if (zero_run) {
1430  if (coeff_i + zero_run > 64) {
1431  av_log(s->avctx, AV_LOG_DEBUG,
1432  "Invalid zero run of %d with %d coeffs left\n",
1433  zero_run, 64 - coeff_i);
1434  zero_run = 64 - coeff_i;
1435  }
1436  *s->dct_tokens[plane][coeff_i]++ = TOKEN_ZERO_RUN(coeff, zero_run);
1437  coeff_i += zero_run;
1438  } else {
1439  if (!coeff_i)
1440  s->all_fragments[fragment].dc = coeff;
1441 
1442  *s->dct_tokens[plane][coeff_i]++ = TOKEN_COEFF(coeff);
1443  }
1444  coeff_i++;
1445  if (coeff_i >= 64) /* > 64 occurs when there is a zero_run overflow */
1446  return 0; /* stop */
1447  } else {
1448  av_log(s->avctx, AV_LOG_ERROR, "Invalid token %d\n", token);
1449  return -1;
1450  }
1451  }
1452  *s->dct_tokens[plane][coeff_i]++ = TOKEN_EOB(0);
1453  eob_tracker[coeff_i]--;
1454  return 0;
1455 }
1456 
1457 static void vp4_dc_predictor_reset(VP4Predictor *p)
1458 {
1459  p->dc = 0;
1460  p->type = VP4_DC_UNDEFINED;
1461 }
1462 
1463 static void vp4_dc_pred_before(const Vp3DecodeContext *s, VP4Predictor dc_pred[6][6], int sb_x)
1464 {
1465  int i, j;
1466 
1467  for (i = 0; i < 4; i++)
1468  dc_pred[0][i + 1] = s->dc_pred_row[sb_x * 4 + i];
1469 
1470  for (j = 1; j < 5; j++)
1471  for (i = 0; i < 4; i++)
1472  vp4_dc_predictor_reset(&dc_pred[j][i + 1]);
1473 }
1474 
1475 static void vp4_dc_pred_after(Vp3DecodeContext *s, VP4Predictor dc_pred[6][6], int sb_x)
1476 {
1477  int i;
1478 
1479  for (i = 0; i < 4; i++)
1480  s->dc_pred_row[sb_x * 4 + i] = dc_pred[4][i + 1];
1481 
1482  for (i = 1; i < 5; i++)
1483  dc_pred[i][0] = dc_pred[i][4];
1484 }
1485 
1486 /* note: dc_pred points to the current block */
1487 static int vp4_dc_pred(const Vp3DecodeContext *s, const VP4Predictor * dc_pred, const int * last_dc, int type, int plane)
1488 {
1489  int count = 0;
1490  int dc = 0;
1491 
1492  if (dc_pred[-6].type == type) {
1493  dc += dc_pred[-6].dc;
1494  count++;
1495  }
1496 
1497  if (dc_pred[6].type == type) {
1498  dc += dc_pred[6].dc;
1499  count++;
1500  }
1501 
1502  if (count != 2 && dc_pred[-1].type == type) {
1503  dc += dc_pred[-1].dc;
1504  count++;
1505  }
1506 
1507  if (count != 2 && dc_pred[1].type == type) {
1508  dc += dc_pred[1].dc;
1509  count++;
1510  }
1511 
1512  /* using division instead of shift to correctly handle negative values */
1513  return count == 2 ? dc / 2 : last_dc[type];
1514 }
1515 
1516 static void vp4_set_tokens_base(Vp3DecodeContext *s)
1517 {
1518  int plane, i;
1519  int16_t *base = s->dct_tokens_base;
1520  for (plane = 0; plane < 3; plane++) {
1521  for (i = 0; i < 64; i++) {
1522  s->dct_tokens[plane][i] = base;
1523  base += s->fragment_width[!!plane] * s->fragment_height[!!plane];
1524  }
1525  }
1526 }
1527 
1528 static int vp4_unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
1529 {
1530  int i, j;
1531  int dc_y_table;
1532  int dc_c_table;
1533  int ac_y_table;
1534  int ac_c_table;
1535  VLC *tables[2][64];
1536  int plane, sb_y, sb_x;
1537  int eob_tracker[64];
1538  VP4Predictor dc_pred[6][6];
1539  int last_dc[NB_VP4_DC_TYPES];
1540 
1541  if (get_bits_left(gb) < 16)
1542  return AVERROR_INVALIDDATA;
1543 
1544  /* fetch the DC table indexes */
1545  dc_y_table = get_bits(gb, 4);
1546  dc_c_table = get_bits(gb, 4);
1547 
1548  ac_y_table = get_bits(gb, 4);
1549  ac_c_table = get_bits(gb, 4);
1550 
1551  /* build tables of DC/AC VLC tables */
1552 
1553  /* DC table group */
1554  tables[0][0] = &s->coeff_vlc[dc_y_table];
1555  tables[1][0] = &s->coeff_vlc[dc_c_table];
1556  for (i = 1; i <= 5; i++) {
1557  /* AC VLC table group 1 */
1558  tables[0][i] = &s->coeff_vlc[ac_y_table + 16];
1559  tables[1][i] = &s->coeff_vlc[ac_c_table + 16];
1560  }
1561  for (i = 6; i <= 14; i++) {
1562  /* AC VLC table group 2 */
1563  tables[0][i] = &s->coeff_vlc[ac_y_table + 32];
1564  tables[1][i] = &s->coeff_vlc[ac_c_table + 32];
1565  }
1566  for (i = 15; i <= 27; i++) {
1567  /* AC VLC table group 3 */
1568  tables[0][i] = &s->coeff_vlc[ac_y_table + 48];
1569  tables[1][i] = &s->coeff_vlc[ac_c_table + 48];
1570  }
1571  for (i = 28; i <= 63; i++) {
1572  /* AC VLC table group 4 */
1573  tables[0][i] = &s->coeff_vlc[ac_y_table + 64];
1574  tables[1][i] = &s->coeff_vlc[ac_c_table + 64];
1575  }
1576 
1577  vp4_set_tokens_base(s);
1578 
1579  memset(last_dc, 0, sizeof(last_dc));
1580 
1581  for (plane = 0; plane < ((s->avctx->flags & AV_CODEC_FLAG_GRAY) ? 1 : 3); plane++) {
1582  memset(eob_tracker, 0, sizeof(eob_tracker));
1583 
1584  /* initialise dc prediction */
1585  for (i = 0; i < s->fragment_width[!!plane]; i++)
1586  vp4_dc_predictor_reset(&s->dc_pred_row[i]);
1587 
1588  for (j = 0; j < 6; j++)
1589  for (i = 0; i < 6; i++)
1590  vp4_dc_predictor_reset(&dc_pred[j][i]);
1591 
1592  for (sb_y = 0; sb_y * 4 < s->fragment_height[!!plane]; sb_y++) {
1593  for (sb_x = 0; sb_x *4 < s->fragment_width[!!plane]; sb_x++) {
1594  vp4_dc_pred_before(s, dc_pred, sb_x);
1595  for (j = 0; j < 16; j++) {
1596  int hx = hilbert_offset[j][0];
1597  int hy = hilbert_offset[j][1];
1598  int x = 4 * sb_x + hx;
1599  int y = 4 * sb_y + hy;
1600  VP4Predictor *this_dc_pred = &dc_pred[hy + 1][hx + 1];
1601  int fragment, dc_block_type;
1602 
1603  if (x >= s->fragment_width[!!plane] || y >= s->fragment_height[!!plane])
1604  continue;
1605 
1606  fragment = s->fragment_start[plane] + y * s->fragment_width[!!plane] + x;
1607 
1608  if (s->all_fragments[fragment].coding_method == MODE_COPY)
1609  continue;
1610 
1611  if (vp4_unpack_vlcs(s, gb, tables[!!plane], plane, eob_tracker, fragment) < 0)
1612  return -1;
1613 
1614  dc_block_type = vp4_pred_block_type_map[s->all_fragments[fragment].coding_method];
1615 
1616  s->all_fragments[fragment].dc +=
1617  vp4_dc_pred(s, this_dc_pred, last_dc, dc_block_type, plane);
1618 
1619  this_dc_pred->type = dc_block_type,
1620  this_dc_pred->dc = last_dc[dc_block_type] = s->all_fragments[fragment].dc;
1621  }
1622  vp4_dc_pred_after(s, dc_pred, sb_x);
1623  }
1624  }
1625  }
1626 
1627  vp4_set_tokens_base(s);
1628 
1629  return 0;
1630 }
1631 #endif
1632 
1633 /*
1634  * This function reverses the DC prediction for each coded fragment in
1635  * the frame. Much of this function is adapted directly from the original
1636  * VP3 source code.
1637  */
1638 #define COMPATIBLE_FRAME(x) \
1639  (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
1640 #define DC_COEFF(u) s->all_fragments[u].dc
1641 
1643  int first_fragment,
1644  int fragment_width,
1645  int fragment_height)
1646 {
1647 #define PUL 8
1648 #define PU 4
1649 #define PUR 2
1650 #define PL 1
1651 
1652  int x, y;
1653  int i = first_fragment;
1654 
1655  int predicted_dc;
1656 
1657  /* DC values for the left, up-left, up, and up-right fragments */
1658  int vl, vul, vu, vur;
1659 
1660  /* indexes for the left, up-left, up, and up-right fragments */
1661  int l, ul, u, ur;
1662 
1663  /*
1664  * The 6 fields mean:
1665  * 0: up-left multiplier
1666  * 1: up multiplier
1667  * 2: up-right multiplier
1668  * 3: left multiplier
1669  */
1670  static const int predictor_transform[16][4] = {
1671  { 0, 0, 0, 0 },
1672  { 0, 0, 0, 128 }, // PL
1673  { 0, 0, 128, 0 }, // PUR
1674  { 0, 0, 53, 75 }, // PUR|PL
1675  { 0, 128, 0, 0 }, // PU
1676  { 0, 64, 0, 64 }, // PU |PL
1677  { 0, 128, 0, 0 }, // PU |PUR
1678  { 0, 0, 53, 75 }, // PU |PUR|PL
1679  { 128, 0, 0, 0 }, // PUL
1680  { 0, 0, 0, 128 }, // PUL|PL
1681  { 64, 0, 64, 0 }, // PUL|PUR
1682  { 0, 0, 53, 75 }, // PUL|PUR|PL
1683  { 0, 128, 0, 0 }, // PUL|PU
1684  { -104, 116, 0, 116 }, // PUL|PU |PL
1685  { 24, 80, 24, 0 }, // PUL|PU |PUR
1686  { -104, 116, 0, 116 } // PUL|PU |PUR|PL
1687  };
1688 
1689  /* This table shows which types of blocks can use other blocks for
1690  * prediction. For example, INTRA is the only mode in this table to
1691  * have a frame number of 0. That means INTRA blocks can only predict
1692  * from other INTRA blocks. There are 2 golden frame coding types;
1693  * blocks encoding in these modes can only predict from other blocks
1694  * that were encoded with these 1 of these 2 modes. */
1695  static const unsigned char compatible_frame[9] = {
1696  1, /* MODE_INTER_NO_MV */
1697  0, /* MODE_INTRA */
1698  1, /* MODE_INTER_PLUS_MV */
1699  1, /* MODE_INTER_LAST_MV */
1700  1, /* MODE_INTER_PRIOR_MV */
1701  2, /* MODE_USING_GOLDEN */
1702  2, /* MODE_GOLDEN_MV */
1703  1, /* MODE_INTER_FOUR_MV */
1704  3 /* MODE_COPY */
1705  };
1706  int current_frame_type;
1707 
1708  /* there is a last DC predictor for each of the 3 frame types */
1709  short last_dc[3];
1710 
1711  int transform = 0;
1712 
1713  vul =
1714  vu =
1715  vur =
1716  vl = 0;
1717  last_dc[0] =
1718  last_dc[1] =
1719  last_dc[2] = 0;
1720 
1721  /* for each fragment row... */
1722  for (y = 0; y < fragment_height; y++) {
1723  /* for each fragment in a row... */
1724  for (x = 0; x < fragment_width; x++, i++) {
1725 
1726  /* reverse prediction if this block was coded */
1727  if (s->all_fragments[i].coding_method != MODE_COPY) {
1728  current_frame_type =
1729  compatible_frame[s->all_fragments[i].coding_method];
1730 
1731  transform = 0;
1732  if (x) {
1733  l = i - 1;
1734  vl = DC_COEFF(l);
1735  if (COMPATIBLE_FRAME(l))
1736  transform |= PL;
1737  }
1738  if (y) {
1739  u = i - fragment_width;
1740  vu = DC_COEFF(u);
1741  if (COMPATIBLE_FRAME(u))
1742  transform |= PU;
1743  if (x) {
1744  ul = i - fragment_width - 1;
1745  vul = DC_COEFF(ul);
1746  if (COMPATIBLE_FRAME(ul))
1747  transform |= PUL;
1748  }
1749  if (x + 1 < fragment_width) {
1750  ur = i - fragment_width + 1;
1751  vur = DC_COEFF(ur);
1752  if (COMPATIBLE_FRAME(ur))
1753  transform |= PUR;
1754  }
1755  }
1756 
1757  if (transform == 0) {
1758  /* if there were no fragments to predict from, use last
1759  * DC saved */
1760  predicted_dc = last_dc[current_frame_type];
1761  } else {
1762  /* apply the appropriate predictor transform */
1763  predicted_dc =
1764  (predictor_transform[transform][0] * vul) +
1765  (predictor_transform[transform][1] * vu) +
1766  (predictor_transform[transform][2] * vur) +
1767  (predictor_transform[transform][3] * vl);
1768 
1769  predicted_dc /= 128;
1770 
1771  /* check for outranging on the [ul u l] and
1772  * [ul u ur l] predictors */
1773  if ((transform == 15) || (transform == 13)) {
1774  if (FFABS(predicted_dc - vu) > 128)
1775  predicted_dc = vu;
1776  else if (FFABS(predicted_dc - vl) > 128)
1777  predicted_dc = vl;
1778  else if (FFABS(predicted_dc - vul) > 128)
1779  predicted_dc = vul;
1780  }
1781  }
1782 
1783  /* at long last, apply the predictor */
1784  DC_COEFF(i) += predicted_dc;
1785  /* save the DC */
1786  last_dc[current_frame_type] = DC_COEFF(i);
1787  }
1788  }
1789  }
1790 }
1791 
1792 static void apply_loop_filter(Vp3DecodeContext *s, int plane,
1793  int ystart, int yend)
1794 {
1795  int x, y;
1796  int *bounding_values = s->bounding_values_array + 127;
1797 
1798  int width = s->fragment_width[!!plane];
1799  int height = s->fragment_height[!!plane];
1800  int fragment = s->fragment_start[plane] + ystart * width;
1801  ptrdiff_t stride = s->current_frame.f->linesize[plane];
1802  uint8_t *plane_data = s->current_frame.f->data[plane];
1803  if (!s->flipped_image)
1804  stride = -stride;
1805  plane_data += s->data_offset[plane] + 8 * ystart * stride;
1806 
1807  for (y = ystart; y < yend; y++) {
1808  for (x = 0; x < width; x++) {
1809  /* This code basically just deblocks on the edges of coded blocks.
1810  * However, it has to be much more complicated because of the
1811  * brain damaged deblock ordering used in VP3/Theora. Order matters
1812  * because some pixels get filtered twice. */
1813  if (s->all_fragments[fragment].coding_method != MODE_COPY) {
1814  /* do not perform left edge filter for left columns frags */
1815  if (x > 0) {
1816  s->vp3dsp.h_loop_filter(
1817  plane_data + 8 * x,
1818  stride, bounding_values);
1819  }
1820 
1821  /* do not perform top edge filter for top row fragments */
1822  if (y > 0) {
1823  s->vp3dsp.v_loop_filter(
1824  plane_data + 8 * x,
1825  stride, bounding_values);
1826  }
1827 
1828  /* do not perform right edge filter for right column
1829  * fragments or if right fragment neighbor is also coded
1830  * in this frame (it will be filtered in next iteration) */
1831  if ((x < width - 1) &&
1832  (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
1833  s->vp3dsp.h_loop_filter(
1834  plane_data + 8 * x + 8,
1835  stride, bounding_values);
1836  }
1837 
1838  /* do not perform bottom edge filter for bottom row
1839  * fragments or if bottom fragment neighbor is also coded
1840  * in this frame (it will be filtered in the next row) */
1841  if ((y < height - 1) &&
1842  (s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
1843  s->vp3dsp.v_loop_filter(
1844  plane_data + 8 * x + 8 * stride,
1845  stride, bounding_values);
1846  }
1847  }
1848 
1849  fragment++;
1850  }
1851  plane_data += 8 * stride;
1852  }
1853 }
1854 
1855 /**
1856  * Pull DCT tokens from the 64 levels to decode and dequant the coefficients
1857  * for the next block in coding order
1858  */
1859 static inline int vp3_dequant(Vp3DecodeContext *s, Vp3Fragment *frag,
1860  int plane, int inter, int16_t block[64])
1861 {
1862  int16_t *dequantizer = s->qmat[frag->qpi][inter][plane];
1863  uint8_t *perm = s->idct_scantable;
1864  int i = 0;
1865 
1866  do {
1867  int token = *s->dct_tokens[plane][i];
1868  switch (token & 3) {
1869  case 0: // EOB
1870  if (--token < 4) // 0-3 are token types so the EOB run must now be 0
1871  s->dct_tokens[plane][i]++;
1872  else
1873  *s->dct_tokens[plane][i] = token & ~3;
1874  goto end;
1875  case 1: // zero run
1876  s->dct_tokens[plane][i]++;
1877  i += (token >> 2) & 0x7f;
1878  if (i > 63) {
1879  av_log(s->avctx, AV_LOG_ERROR, "Coefficient index overflow\n");
1880  return i;
1881  }
1882  block[perm[i]] = (token >> 9) * dequantizer[perm[i]];
1883  i++;
1884  break;
1885  case 2: // coeff
1886  block[perm[i]] = (token >> 2) * dequantizer[perm[i]];
1887  s->dct_tokens[plane][i++]++;
1888  break;
1889  default: // shouldn't happen
1890  return i;
1891  }
1892  } while (i < 64);
1893  // return value is expected to be a valid level
1894  i--;
1895 end:
1896  // the actual DC+prediction is in the fragment structure
1897  block[0] = frag->dc * s->qmat[0][inter][plane][0];
1898  return i;
1899 }
1900 
1901 /**
1902  * called when all pixels up to row y are complete
1903  */
1905 {
1906  int h, cy, i;
1908 
1909  if (HAVE_THREADS && s->avctx->active_thread_type & FF_THREAD_FRAME) {
1910  int y_flipped = s->flipped_image ? s->height - y : y;
1911 
1912  /* At the end of the frame, report INT_MAX instead of the height of
1913  * the frame. This makes the other threads' ff_thread_await_progress()
1914  * calls cheaper, because they don't have to clip their values. */
1915  ff_thread_report_progress(&s->current_frame,
1916  y_flipped == s->height ? INT_MAX
1917  : y_flipped - 1,
1918  0);
1919  }
1920 
1921  if (!s->avctx->draw_horiz_band)
1922  return;
1923 
1924  h = y - s->last_slice_end;
1925  s->last_slice_end = y;
1926  y -= h;
1927 
1928  if (!s->flipped_image)
1929  y = s->height - y - h;
1930 
1931  cy = y >> s->chroma_y_shift;
1932  offset[0] = s->current_frame.f->linesize[0] * y;
1933  offset[1] = s->current_frame.f->linesize[1] * cy;
1934  offset[2] = s->current_frame.f->linesize[2] * cy;
1935  for (i = 3; i < AV_NUM_DATA_POINTERS; i++)
1936  offset[i] = 0;
1937 
1938  emms_c();
1939  s->avctx->draw_horiz_band(s->avctx, s->current_frame.f, offset, y, 3, h);
1940 }
1941 
1942 /**
1943  * Wait for the reference frame of the current fragment.
1944  * The progress value is in luma pixel rows.
1945  */
1947  int motion_y, int y)
1948 {
1949  ThreadFrame *ref_frame;
1950  int ref_row;
1951  int border = motion_y & 1;
1952 
1953  if (fragment->coding_method == MODE_USING_GOLDEN ||
1954  fragment->coding_method == MODE_GOLDEN_MV)
1955  ref_frame = &s->golden_frame;
1956  else
1957  ref_frame = &s->last_frame;
1958 
1959  ref_row = y + (motion_y >> 1);
1960  ref_row = FFMAX(FFABS(ref_row), ref_row + 8 + border);
1961 
1962  ff_thread_await_progress(ref_frame, ref_row, 0);
1963 }
1964 
1965 #if CONFIG_VP4_DECODER
1966 /**
1967  * @return non-zero if temp (edge_emu_buffer) was populated
1968  */
1969 static int vp4_mc_loop_filter(Vp3DecodeContext *s, int plane, int motion_x, int motion_y, int bx, int by,
1970  uint8_t * motion_source, int stride, int src_x, int src_y, uint8_t *temp)
1971 {
1972  int motion_shift = plane ? 4 : 2;
1973  int subpel_mask = plane ? 3 : 1;
1974  int *bounding_values = s->bounding_values_array + 127;
1975 
1976  int i;
1977  int x, y;
1978  int x2, y2;
1979  int x_subpel, y_subpel;
1980  int x_offset, y_offset;
1981 
1982  int block_width = plane ? 8 : 16;
1983  int plane_width = s->width >> (plane && s->chroma_x_shift);
1984  int plane_height = s->height >> (plane && s->chroma_y_shift);
1985 
1986 #define loop_stride 12
1987  uint8_t loop[12 * loop_stride];
1988 
1989  /* using division instead of shift to correctly handle negative values */
1990  x = 8 * bx + motion_x / motion_shift;
1991  y = 8 * by + motion_y / motion_shift;
1992 
1993  x_subpel = motion_x & subpel_mask;
1994  y_subpel = motion_y & subpel_mask;
1995 
1996  if (x_subpel || y_subpel) {
1997  x--;
1998  y--;
1999 
2000  if (x_subpel)
2001  x = FFMIN(x, x + FFSIGN(motion_x));
2002 
2003  if (y_subpel)
2004  y = FFMIN(y, y + FFSIGN(motion_y));
2005 
2006  x2 = x + block_width;
2007  y2 = y + block_width;
2008 
2009  if (x2 < 0 || x2 >= plane_width || y2 < 0 || y2 >= plane_height)
2010  return 0;
2011 
2012  x_offset = (-(x + 2) & 7) + 2;
2013  y_offset = (-(y + 2) & 7) + 2;
2014 
2015  av_assert1(!(x_offset > 8 + x_subpel && y_offset > 8 + y_subpel));
2016 
2017  s->vdsp.emulated_edge_mc(loop, motion_source - stride - 1,
2018  loop_stride, stride,
2019  12, 12, src_x - 1, src_y - 1,
2020  plane_width,
2021  plane_height);
2022 
2023  if (x_offset <= 8 + x_subpel)
2024  ff_vp3dsp_h_loop_filter_12(loop + x_offset, loop_stride, bounding_values);
2025 
2026  if (y_offset <= 8 + y_subpel)
2027  ff_vp3dsp_v_loop_filter_12(loop + y_offset*loop_stride, loop_stride, bounding_values);
2028 
2029  } else {
2030 
2031  x_offset = -x & 7;
2032  y_offset = -y & 7;
2033 
2034  if (!x_offset && !y_offset)
2035  return 0;
2036 
2037  s->vdsp.emulated_edge_mc(loop, motion_source - stride - 1,
2038  loop_stride, stride,
2039  12, 12, src_x - 1, src_y - 1,
2040  plane_width,
2041  plane_height);
2042 
2043 #define safe_loop_filter(name, ptr, stride, bounding_values) \
2044  if ((uintptr_t)(ptr) & 7) \
2045  s->vp3dsp.name##_unaligned(ptr, stride, bounding_values); \
2046  else \
2047  s->vp3dsp.name(ptr, stride, bounding_values);
2048 
2049  if (x_offset)
2050  safe_loop_filter(h_loop_filter, loop + loop_stride + x_offset + 1, loop_stride, bounding_values);
2051 
2052  if (y_offset)
2053  safe_loop_filter(v_loop_filter, loop + (y_offset + 1)*loop_stride + 1, loop_stride, bounding_values);
2054  }
2055 
2056  for (i = 0; i < 9; i++)
2057  memcpy(temp + i*stride, loop + (i + 1) * loop_stride + 1, 9);
2058 
2059  return 1;
2060 }
2061 #endif
2062 
2063 /*
2064  * Perform the final rendering for a particular slice of data.
2065  * The slice number ranges from 0..(c_superblock_height - 1).
2066  */
2067 static void render_slice(Vp3DecodeContext *s, int slice)
2068 {
2069  int x, y, i, j, fragment;
2070  int16_t *block = s->block;
2071  int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
2072  int motion_halfpel_index;
2073  uint8_t *motion_source;
2074  int plane, first_pixel;
2075 
2076  if (slice >= s->c_superblock_height)
2077  return;
2078 
2079  for (plane = 0; plane < 3; plane++) {
2080  uint8_t *output_plane = s->current_frame.f->data[plane] +
2081  s->data_offset[plane];
2082  uint8_t *last_plane = s->last_frame.f->data[plane] +
2083  s->data_offset[plane];
2084  uint8_t *golden_plane = s->golden_frame.f->data[plane] +
2085  s->data_offset[plane];
2086  ptrdiff_t stride = s->current_frame.f->linesize[plane];
2087  int plane_width = s->width >> (plane && s->chroma_x_shift);
2088  int plane_height = s->height >> (plane && s->chroma_y_shift);
2089  int8_t(*motion_val)[2] = s->motion_val[!!plane];
2090 
2091  int sb_x, sb_y = slice << (!plane && s->chroma_y_shift);
2092  int slice_height = sb_y + 1 + (!plane && s->chroma_y_shift);
2093  int slice_width = plane ? s->c_superblock_width
2094  : s->y_superblock_width;
2095 
2096  int fragment_width = s->fragment_width[!!plane];
2097  int fragment_height = s->fragment_height[!!plane];
2098  int fragment_start = s->fragment_start[plane];
2099 
2100  int do_await = !plane && HAVE_THREADS &&
2101  (s->avctx->active_thread_type & FF_THREAD_FRAME);
2102 
2103  if (!s->flipped_image)
2104  stride = -stride;
2105  if (CONFIG_GRAY && plane && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
2106  continue;
2107 
2108  /* for each superblock row in the slice (both of them)... */
2109  for (; sb_y < slice_height; sb_y++) {
2110  /* for each superblock in a row... */
2111  for (sb_x = 0; sb_x < slice_width; sb_x++) {
2112  /* for each block in a superblock... */
2113  for (j = 0; j < 16; j++) {
2114  x = 4 * sb_x + hilbert_offset[j][0];
2115  y = 4 * sb_y + hilbert_offset[j][1];
2116  fragment = y * fragment_width + x;
2117 
2118  i = fragment_start + fragment;
2119 
2120  // bounds check
2121  if (x >= fragment_width || y >= fragment_height)
2122  continue;
2123 
2124  first_pixel = 8 * y * stride + 8 * x;
2125 
2126  if (do_await &&
2127  s->all_fragments[i].coding_method != MODE_INTRA)
2128  await_reference_row(s, &s->all_fragments[i],
2129  motion_val[fragment][1],
2130  (16 * y) >> s->chroma_y_shift);
2131 
2132  /* transform if this block was coded */
2133  if (s->all_fragments[i].coding_method != MODE_COPY) {
2134  if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) ||
2135  (s->all_fragments[i].coding_method == MODE_GOLDEN_MV))
2136  motion_source = golden_plane;
2137  else
2138  motion_source = last_plane;
2139 
2140  motion_source += first_pixel;
2141  motion_halfpel_index = 0;
2142 
2143  /* sort out the motion vector if this fragment is coded
2144  * using a motion vector method */
2145  if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
2146  (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) {
2147  int src_x, src_y;
2148  int standard_mc = 1;
2149  motion_x = motion_val[fragment][0];
2150  motion_y = motion_val[fragment][1];
2151 #if CONFIG_VP4_DECODER
2152  if (plane && s->version >= 2) {
2153  motion_x = (motion_x >> 1) | (motion_x & 1);
2154  motion_y = (motion_y >> 1) | (motion_y & 1);
2155  }
2156 #endif
2157 
2158  src_x = (motion_x >> 1) + 8 * x;
2159  src_y = (motion_y >> 1) + 8 * y;
2160 
2161  motion_halfpel_index = motion_x & 0x01;
2162  motion_source += (motion_x >> 1);
2163 
2164  motion_halfpel_index |= (motion_y & 0x01) << 1;
2165  motion_source += ((motion_y >> 1) * stride);
2166 
2167 #if CONFIG_VP4_DECODER
2168  if (s->version >= 2) {
2169  uint8_t *temp = s->edge_emu_buffer;
2170  if (stride < 0)
2171  temp -= 8 * stride;
2172  if (vp4_mc_loop_filter(s, plane, motion_val[fragment][0], motion_val[fragment][1], x, y, motion_source, stride, src_x, src_y, temp)) {
2173  motion_source = temp;
2174  standard_mc = 0;
2175  }
2176  }
2177 #endif
2178 
2179  if (standard_mc && (
2180  src_x < 0 || src_y < 0 ||
2181  src_x + 9 >= plane_width ||
2182  src_y + 9 >= plane_height)) {
2183  uint8_t *temp = s->edge_emu_buffer;
2184  if (stride < 0)
2185  temp -= 8 * stride;
2186 
2187  s->vdsp.emulated_edge_mc(temp, motion_source,
2188  stride, stride,
2189  9, 9, src_x, src_y,
2190  plane_width,
2191  plane_height);
2192  motion_source = temp;
2193  }
2194  }
2195 
2196  /* first, take care of copying a block from either the
2197  * previous or the golden frame */
2198  if (s->all_fragments[i].coding_method != MODE_INTRA) {
2199  /* Note, it is possible to implement all MC cases
2200  * with put_no_rnd_pixels_l2 which would look more
2201  * like the VP3 source but this would be slower as
2202  * put_no_rnd_pixels_tab is better optimized */
2203  if (motion_halfpel_index != 3) {
2204  s->hdsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
2205  output_plane + first_pixel,
2206  motion_source, stride, 8);
2207  } else {
2208  /* d is 0 if motion_x and _y have the same sign,
2209  * else -1 */
2210  int d = (motion_x ^ motion_y) >> 31;
2211  s->vp3dsp.put_no_rnd_pixels_l2(output_plane + first_pixel,
2212  motion_source - d,
2213  motion_source + stride + 1 + d,
2214  stride, 8);
2215  }
2216  }
2217 
2218  /* invert DCT and place (or add) in final output */
2219 
2220  if (s->all_fragments[i].coding_method == MODE_INTRA) {
2221  vp3_dequant(s, s->all_fragments + i,
2222  plane, 0, block);
2223  s->vp3dsp.idct_put(output_plane + first_pixel,
2224  stride,
2225  block);
2226  } else {
2227  if (vp3_dequant(s, s->all_fragments + i,
2228  plane, 1, block)) {
2229  s->vp3dsp.idct_add(output_plane + first_pixel,
2230  stride,
2231  block);
2232  } else {
2233  s->vp3dsp.idct_dc_add(output_plane + first_pixel,
2234  stride, block);
2235  }
2236  }
2237  } else {
2238  /* copy directly from the previous frame */
2239  s->hdsp.put_pixels_tab[1][0](
2240  output_plane + first_pixel,
2241  last_plane + first_pixel,
2242  stride, 8);
2243  }
2244  }
2245  }
2246 
2247  // Filter up to the last row in the superblock row
2248  if (s->version < 2 && !s->skip_loop_filter)
2249  apply_loop_filter(s, plane, 4 * sb_y - !!sb_y,
2250  FFMIN(4 * sb_y + 3, fragment_height - 1));
2251  }
2252  }
2253 
2254  /* this looks like a good place for slice dispatch... */
2255  /* algorithm:
2256  * if (slice == s->macroblock_height - 1)
2257  * dispatch (both last slice & 2nd-to-last slice);
2258  * else if (slice > 0)
2259  * dispatch (slice - 1);
2260  */
2261 
2262  vp3_draw_horiz_band(s, FFMIN((32 << s->chroma_y_shift) * (slice + 1) - 16,
2263  s->height - 16));
2264 }
2265 
2266 /// Allocate tables for per-frame data in Vp3DecodeContext
2268 {
2269  Vp3DecodeContext *s = avctx->priv_data;
2270  int y_fragment_count, c_fragment_count;
2271 
2272  free_tables(avctx);
2273 
2274  y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
2275  c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
2276 
2277  /* superblock_coding is used by unpack_superblocks (VP3/Theora) and vp4_unpack_macroblocks (VP4) */
2278  s->superblock_coding = av_mallocz(FFMAX(s->superblock_count, s->yuv_macroblock_count));
2279  s->all_fragments = av_mallocz_array(s->fragment_count, sizeof(Vp3Fragment));
2280 
2281  s-> kf_coded_fragment_list = av_mallocz_array(s->fragment_count, sizeof(int));
2282  s->nkf_coded_fragment_list = av_mallocz_array(s->fragment_count, sizeof(int));
2283  memset(s-> num_kf_coded_fragment, -1, sizeof(s-> num_kf_coded_fragment));
2284 
2285  s->dct_tokens_base = av_mallocz_array(s->fragment_count,
2286  64 * sizeof(*s->dct_tokens_base));
2287  s->motion_val[0] = av_mallocz_array(y_fragment_count, sizeof(*s->motion_val[0]));
2288  s->motion_val[1] = av_mallocz_array(c_fragment_count, sizeof(*s->motion_val[1]));
2289 
2290  /* work out the block mapping tables */
2291  s->superblock_fragments = av_mallocz_array(s->superblock_count, 16 * sizeof(int));
2292  s->macroblock_coding = av_mallocz(s->macroblock_count + 1);
2293 
2294  s->dc_pred_row = av_malloc_array(s->y_superblock_width * 4, sizeof(*s->dc_pred_row));
2295 
2296  if (!s->superblock_coding || !s->all_fragments ||
2297  !s->dct_tokens_base || !s->kf_coded_fragment_list ||
2298  !s->nkf_coded_fragment_list ||
2299  !s->superblock_fragments || !s->macroblock_coding ||
2300  !s->dc_pred_row ||
2301  !s->motion_val[0] || !s->motion_val[1]) {
2302  return -1;
2303  }
2304 
2306 
2307  return 0;
2308 }
2309 
2311 {
2312  s->current_frame.f = av_frame_alloc();
2313  s->last_frame.f = av_frame_alloc();
2314  s->golden_frame.f = av_frame_alloc();
2315 
2316  if (!s->current_frame.f || !s->last_frame.f || !s->golden_frame.f)
2317  return AVERROR(ENOMEM);
2318 
2319  return 0;
2320 }
2321 
2323 {
2324  Vp3DecodeContext *s = avctx->priv_data;
2325  int i, inter, plane, ret;
2326  int c_width;
2327  int c_height;
2328  int y_fragment_count, c_fragment_count;
2329 #if CONFIG_VP4_DECODER
2330  int j;
2331 #endif
2332 
2333  ret = init_frames(s);
2334  if (ret < 0)
2335  return ret;
2336 
2337  if (avctx->codec_tag == MKTAG('V', 'P', '4', '0'))
2338  s->version = 3;
2339  else if (avctx->codec_tag == MKTAG('V', 'P', '3', '0'))
2340  s->version = 0;
2341  else
2342  s->version = 1;
2343 
2344  s->avctx = avctx;
2345  s->width = FFALIGN(avctx->coded_width, 16);
2346  s->height = FFALIGN(avctx->coded_height, 16);
2347  if (s->width < 18)
2348  return AVERROR_PATCHWELCOME;
2349  if (avctx->codec_id != AV_CODEC_ID_THEORA)
2350  avctx->pix_fmt = AV_PIX_FMT_YUV420P;
2352  ff_hpeldsp_init(&s->hdsp, avctx->flags | AV_CODEC_FLAG_BITEXACT);
2353  ff_videodsp_init(&s->vdsp, 8);
2354  ff_vp3dsp_init(&s->vp3dsp, avctx->flags);
2355 
2356  for (i = 0; i < 64; i++) {
2357 #define TRANSPOSE(x) (((x) >> 3) | (((x) & 7) << 3))
2358  s->idct_permutation[i] = TRANSPOSE(i);
2359  s->idct_scantable[i] = TRANSPOSE(ff_zigzag_direct[i]);
2360 #undef TRANSPOSE
2361  }
2362 
2363  /* initialize to an impossible value which will force a recalculation
2364  * in the first frame decode */
2365  for (i = 0; i < 3; i++)
2366  s->qps[i] = -1;
2367 
2368  ret = av_pix_fmt_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_x_shift, &s->chroma_y_shift);
2369  if (ret)
2370  return ret;
2371 
2372  s->y_superblock_width = (s->width + 31) / 32;
2373  s->y_superblock_height = (s->height + 31) / 32;
2374  s->y_superblock_count = s->y_superblock_width * s->y_superblock_height;
2375 
2376  /* work out the dimensions for the C planes */
2377  c_width = s->width >> s->chroma_x_shift;
2378  c_height = s->height >> s->chroma_y_shift;
2379  s->c_superblock_width = (c_width + 31) / 32;
2380  s->c_superblock_height = (c_height + 31) / 32;
2381  s->c_superblock_count = s->c_superblock_width * s->c_superblock_height;
2382 
2383  s->superblock_count = s->y_superblock_count + (s->c_superblock_count * 2);
2384  s->u_superblock_start = s->y_superblock_count;
2385  s->v_superblock_start = s->u_superblock_start + s->c_superblock_count;
2386 
2387  s->macroblock_width = (s->width + 15) / 16;
2388  s->macroblock_height = (s->height + 15) / 16;
2389  s->macroblock_count = s->macroblock_width * s->macroblock_height;
2390  s->c_macroblock_width = (c_width + 15) / 16;
2391  s->c_macroblock_height = (c_height + 15) / 16;
2392  s->c_macroblock_count = s->c_macroblock_width * s->c_macroblock_height;
2393  s->yuv_macroblock_count = s->macroblock_count + 2 * s->c_macroblock_count;
2394 
2395  s->fragment_width[0] = s->width / FRAGMENT_PIXELS;
2396  s->fragment_height[0] = s->height / FRAGMENT_PIXELS;
2397  s->fragment_width[1] = s->fragment_width[0] >> s->chroma_x_shift;
2398  s->fragment_height[1] = s->fragment_height[0] >> s->chroma_y_shift;
2399 
2400  /* fragment count covers all 8x8 blocks for all 3 planes */
2401  y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
2402  c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
2403  s->fragment_count = y_fragment_count + 2 * c_fragment_count;
2404  s->fragment_start[1] = y_fragment_count;
2405  s->fragment_start[2] = y_fragment_count + c_fragment_count;
2406 
2407  if (!s->theora_tables) {
2408  for (i = 0; i < 64; i++) {
2409  s->coded_dc_scale_factor[0][i] = s->version < 2 ? vp31_dc_scale_factor[i] : vp4_y_dc_scale_factor[i];
2410  s->coded_dc_scale_factor[1][i] = s->version < 2 ? vp31_dc_scale_factor[i] : vp4_uv_dc_scale_factor[i];
2411  s->coded_ac_scale_factor[i] = s->version < 2 ? vp31_ac_scale_factor[i] : vp4_ac_scale_factor[i];
2412  s->base_matrix[0][i] = s->version < 2 ? vp31_intra_y_dequant[i] : vp4_generic_dequant[i];
2413  s->base_matrix[1][i] = s->version < 2 ? vp31_intra_c_dequant[i] : vp4_generic_dequant[i];
2414  s->base_matrix[2][i] = s->version < 2 ? vp31_inter_dequant[i] : vp4_generic_dequant[i];
2415  s->filter_limit_values[i] = s->version < 2 ? vp31_filter_limit_values[i] : vp4_filter_limit_values[i];
2416  }
2417 
2418  for (inter = 0; inter < 2; inter++) {
2419  for (plane = 0; plane < 3; plane++) {
2420  s->qr_count[inter][plane] = 1;
2421  s->qr_size[inter][plane][0] = 63;
2422  s->qr_base[inter][plane][0] =
2423  s->qr_base[inter][plane][1] = 2 * inter + (!!plane) * !inter;
2424  }
2425  }
2426 
2427  /* init VLC tables */
2428  if (s->version < 2) {
2429  for (i = 0; i < FF_ARRAY_ELEMS(s->coeff_vlc); i++) {
2430  ret = ff_init_vlc_from_lengths(&s->coeff_vlc[i], 11, 32,
2431  &vp3_bias[i][0][1], 2,
2432  &vp3_bias[i][0][0], 2, 1,
2433  0, 0, avctx);
2434  if (ret < 0)
2435  return ret;
2436  }
2437 #if CONFIG_VP4_DECODER
2438  } else { /* version >= 2 */
2439  for (i = 0; i < FF_ARRAY_ELEMS(s->coeff_vlc); i++) {
2440  ret = ff_init_vlc_from_lengths(&s->coeff_vlc[i], 11, 32,
2441  &vp4_bias[i][0][1], 2,
2442  &vp4_bias[i][0][0], 2, 1,
2443  0, 0, avctx);
2444  if (ret < 0)
2445  return ret;
2446  }
2447 #endif
2448  }
2449  } else {
2450  for (i = 0; i < FF_ARRAY_ELEMS(s->coeff_vlc); i++) {
2451  const HuffTable *tab = &s->huffman_table[i];
2452 
2453  ret = ff_init_vlc_from_lengths(&s->coeff_vlc[i], 11, tab->nb_entries,
2454  &tab->entries[0].len, sizeof(*tab->entries),
2455  &tab->entries[0].sym, sizeof(*tab->entries), 1,
2456  0, 0, avctx);
2457  if (ret < 0)
2458  return ret;
2459  }
2460  }
2461 
2462  ret = ff_init_vlc_from_lengths(&s->superblock_run_length_vlc, SUPERBLOCK_VLC_BITS, 34,
2464  NULL, 0, 0, 1, 0, avctx);
2465  if (ret < 0)
2466  return ret;
2467 
2468  ret = ff_init_vlc_from_lengths(&s->fragment_run_length_vlc, 5, 30,
2470  NULL, 0, 0, 0, 0, avctx);
2471  if (ret < 0)
2472  return ret;
2473 
2474  ret = ff_init_vlc_from_lengths(&s->mode_code_vlc, 3, 8,
2475  mode_code_vlc_len, 1,
2476  NULL, 0, 0, 0, 0, avctx);
2477  if (ret < 0)
2478  return ret;
2479 
2480  ret = ff_init_vlc_from_lengths(&s->motion_vector_vlc, VP3_MV_VLC_BITS, 63,
2481  &motion_vector_vlc_table[0][1], 2,
2482  &motion_vector_vlc_table[0][0], 2, 1,
2483  -31, 0, avctx);
2484  if (ret < 0)
2485  return ret;
2486 
2487 #if CONFIG_VP4_DECODER
2488  for (j = 0; j < 2; j++)
2489  for (i = 0; i < 7; i++) {
2490  ret = ff_init_vlc_from_lengths(&s->vp4_mv_vlc[j][i], VP4_MV_VLC_BITS, 63,
2491  &vp4_mv_vlc[j][i][0][1], 2,
2492  &vp4_mv_vlc[j][i][0][0], 2, 1, -31,
2493  0, avctx);
2494  if (ret < 0)
2495  return ret;
2496  }
2497 
2498  /* version >= 2 */
2499  for (i = 0; i < 2; i++)
2500  if ((ret = init_vlc(&s->block_pattern_vlc[i], 3, 14,
2501  &vp4_block_pattern_vlc[i][0][1], 2, 1,
2502  &vp4_block_pattern_vlc[i][0][0], 2, 1, 0)) < 0)
2503  return ret;
2504 #endif
2505 
2506  return allocate_tables(avctx);
2507 }
2508 
2509 /// Release and shuffle frames after decode finishes
2510 static int update_frames(AVCodecContext *avctx)
2511 {
2512  Vp3DecodeContext *s = avctx->priv_data;
2513  int ret = 0;
2514 
2515  /* shuffle frames (last = current) */
2516  ff_thread_release_buffer(avctx, &s->last_frame);
2517  ret = ff_thread_ref_frame(&s->last_frame, &s->current_frame);
2518  if (ret < 0)
2519  goto fail;
2520 
2521  if (s->keyframe) {
2522  ff_thread_release_buffer(avctx, &s->golden_frame);
2523  ret = ff_thread_ref_frame(&s->golden_frame, &s->current_frame);
2524  }
2525 
2526 fail:
2527  ff_thread_release_buffer(avctx, &s->current_frame);
2528  return ret;
2529 }
2530 
2531 #if HAVE_THREADS
2532 static int ref_frame(Vp3DecodeContext *s, ThreadFrame *dst, ThreadFrame *src)
2533 {
2534  ff_thread_release_buffer(s->avctx, dst);
2535  if (src->f->data[0])
2536  return ff_thread_ref_frame(dst, src);
2537  return 0;
2538 }
2539 
2540 static int ref_frames(Vp3DecodeContext *dst, Vp3DecodeContext *src)
2541 {
2542  int ret;
2543  if ((ret = ref_frame(dst, &dst->current_frame, &src->current_frame)) < 0 ||
2544  (ret = ref_frame(dst, &dst->golden_frame, &src->golden_frame)) < 0 ||
2545  (ret = ref_frame(dst, &dst->last_frame, &src->last_frame)) < 0)
2546  return ret;
2547  return 0;
2548 }
2549 
2550 static int vp3_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
2551 {
2552  Vp3DecodeContext *s = dst->priv_data, *s1 = src->priv_data;
2553  int qps_changed = 0, i, err;
2554 
2555  if (!s1->current_frame.f->data[0] ||
2556  s->width != s1->width || s->height != s1->height) {
2557  if (s != s1)
2558  ref_frames(s, s1);
2559  return -1;
2560  }
2561 
2562  if (s != s1) {
2563  // copy previous frame data
2564  if ((err = ref_frames(s, s1)) < 0)
2565  return err;
2566 
2567  s->keyframe = s1->keyframe;
2568 
2569  // copy qscale data if necessary
2570  for (i = 0; i < 3; i++) {
2571  if (s->qps[i] != s1->qps[1]) {
2572  qps_changed = 1;
2573  memcpy(&s->qmat[i], &s1->qmat[i], sizeof(s->qmat[i]));
2574  }
2575  }
2576 
2577  if (s->qps[0] != s1->qps[0])
2578  memcpy(&s->bounding_values_array, &s1->bounding_values_array,
2579  sizeof(s->bounding_values_array));
2580 
2581  if (qps_changed) {
2582  memcpy(s->qps, s1->qps, sizeof(s->qps));
2583  memcpy(s->last_qps, s1->last_qps, sizeof(s->last_qps));
2584  s->nqps = s1->nqps;
2585  }
2586  }
2587 
2588  return update_frames(dst);
2589 }
2590 #endif
2591 
2593  void *data, int *got_frame,
2594  AVPacket *avpkt)
2595 {
2596  AVFrame *frame = data;
2597  const uint8_t *buf = avpkt->data;
2598  int buf_size = avpkt->size;
2599  Vp3DecodeContext *s = avctx->priv_data;
2600  GetBitContext gb;
2601  int i, ret;
2602 
2603  if ((ret = init_get_bits8(&gb, buf, buf_size)) < 0)
2604  return ret;
2605 
2606 #if CONFIG_THEORA_DECODER
2607  if (s->theora && get_bits1(&gb)) {
2608  int type = get_bits(&gb, 7);
2609  skip_bits_long(&gb, 6*8); /* "theora" */
2610 
2611  if (s->avctx->active_thread_type&FF_THREAD_FRAME) {
2612  av_log(avctx, AV_LOG_ERROR, "midstream reconfiguration with multithreading is unsupported, try -threads 1\n");
2613  return AVERROR_PATCHWELCOME;
2614  }
2615  if (type == 0) {
2616  vp3_decode_end(avctx);
2617  ret = theora_decode_header(avctx, &gb);
2618 
2619  if (ret >= 0)
2620  ret = vp3_decode_init(avctx);
2621  if (ret < 0) {
2622  vp3_decode_end(avctx);
2623  return ret;
2624  }
2625  return buf_size;
2626  } else if (type == 2) {
2627  vp3_decode_end(avctx);
2628  ret = theora_decode_tables(avctx, &gb);
2629  if (ret >= 0)
2630  ret = vp3_decode_init(avctx);
2631  if (ret < 0) {
2632  vp3_decode_end(avctx);
2633  return ret;
2634  }
2635  return buf_size;
2636  }
2637 
2638  av_log(avctx, AV_LOG_ERROR,
2639  "Header packet passed to frame decoder, skipping\n");
2640  return -1;
2641  }
2642 #endif
2643 
2644  s->keyframe = !get_bits1(&gb);
2645  if (!s->all_fragments) {
2646  av_log(avctx, AV_LOG_ERROR, "Data packet without prior valid headers\n");
2647  return -1;
2648  }
2649  if (!s->theora)
2650  skip_bits(&gb, 1);
2651  for (i = 0; i < 3; i++)
2652  s->last_qps[i] = s->qps[i];
2653 
2654  s->nqps = 0;
2655  do {
2656  s->qps[s->nqps++] = get_bits(&gb, 6);
2657  } while (s->theora >= 0x030200 && s->nqps < 3 && get_bits1(&gb));
2658  for (i = s->nqps; i < 3; i++)
2659  s->qps[i] = -1;
2660 
2661  if (s->avctx->debug & FF_DEBUG_PICT_INFO)
2662  av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
2663  s->keyframe ? "key" : "", avctx->frame_number + 1, s->qps[0]);
2664 
2665  s->skip_loop_filter = !s->filter_limit_values[s->qps[0]] ||
2666  avctx->skip_loop_filter >= (s->keyframe ? AVDISCARD_ALL
2667  : AVDISCARD_NONKEY);
2668 
2669  if (s->qps[0] != s->last_qps[0])
2671 
2672  for (i = 0; i < s->nqps; i++)
2673  // reinit all dequantizers if the first one changed, because
2674  // the DC of the first quantizer must be used for all matrices
2675  if (s->qps[i] != s->last_qps[i] || s->qps[0] != s->last_qps[0])
2676  init_dequantizer(s, i);
2677 
2678  if (avctx->skip_frame >= AVDISCARD_NONKEY && !s->keyframe)
2679  return buf_size;
2680 
2681  s->current_frame.f->pict_type = s->keyframe ? AV_PICTURE_TYPE_I
2683  s->current_frame.f->key_frame = s->keyframe;
2684  if ((ret = ff_thread_get_buffer(avctx, &s->current_frame, AV_GET_BUFFER_FLAG_REF)) < 0)
2685  goto error;
2686 
2687  if (!s->edge_emu_buffer) {
2688  s->edge_emu_buffer = av_malloc(9 * FFABS(s->current_frame.f->linesize[0]));
2689  if (!s->edge_emu_buffer) {
2690  ret = AVERROR(ENOMEM);
2691  goto error;
2692  }
2693  }
2694 
2695  if (s->keyframe) {
2696  if (!s->theora) {
2697  skip_bits(&gb, 4); /* width code */
2698  skip_bits(&gb, 4); /* height code */
2699  if (s->version) {
2700  int version = get_bits(&gb, 5);
2701 #if !CONFIG_VP4_DECODER
2702  if (version >= 2) {
2703  av_log(avctx, AV_LOG_ERROR, "This build does not support decoding VP4.\n");
2705  }
2706 #endif
2707  s->version = version;
2708  if (avctx->frame_number == 0)
2709  av_log(s->avctx, AV_LOG_DEBUG,
2710  "VP version: %d\n", s->version);
2711  }
2712  }
2713  if (s->version || s->theora) {
2714  if (get_bits1(&gb))
2715  av_log(s->avctx, AV_LOG_ERROR,
2716  "Warning, unsupported keyframe coding type?!\n");
2717  skip_bits(&gb, 2); /* reserved? */
2718 
2719 #if CONFIG_VP4_DECODER
2720  if (s->version >= 2) {
2721  int mb_height, mb_width;
2722  int mb_width_mul, mb_width_div, mb_height_mul, mb_height_div;
2723 
2724  mb_height = get_bits(&gb, 8);
2725  mb_width = get_bits(&gb, 8);
2726  if (mb_height != s->macroblock_height ||
2727  mb_width != s->macroblock_width)
2728  avpriv_request_sample(s->avctx, "macroblock dimension mismatch");
2729 
2730  mb_width_mul = get_bits(&gb, 5);
2731  mb_width_div = get_bits(&gb, 3);
2732  mb_height_mul = get_bits(&gb, 5);
2733  mb_height_div = get_bits(&gb, 3);
2734  if (mb_width_mul != 1 || mb_width_div != 1 || mb_height_mul != 1 || mb_height_div != 1)
2735  avpriv_request_sample(s->avctx, "unexpected macroblock dimension multipler/divider");
2736 
2737  if (get_bits(&gb, 2))
2738  avpriv_request_sample(s->avctx, "unknown bits");
2739  }
2740 #endif
2741  }
2742  } else {
2743  if (!s->golden_frame.f->data[0]) {
2744  av_log(s->avctx, AV_LOG_WARNING,
2745  "vp3: first frame not a keyframe\n");
2746 
2747  s->golden_frame.f->pict_type = AV_PICTURE_TYPE_I;
2748  if ((ret = ff_thread_get_buffer(avctx, &s->golden_frame,
2749  AV_GET_BUFFER_FLAG_REF)) < 0)
2750  goto error;
2751  ff_thread_release_buffer(avctx, &s->last_frame);
2752  if ((ret = ff_thread_ref_frame(&s->last_frame,
2753  &s->golden_frame)) < 0)
2754  goto error;
2755  ff_thread_report_progress(&s->last_frame, INT_MAX, 0);
2756  }
2757  }
2758 
2759  memset(s->all_fragments, 0, s->fragment_count * sizeof(Vp3Fragment));
2760  ff_thread_finish_setup(avctx);
2761 
2762  if (s->version < 2) {
2763  if ((ret = unpack_superblocks(s, &gb)) < 0) {
2764  av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
2765  goto error;
2766  }
2767 #if CONFIG_VP4_DECODER
2768  } else {
2769  if ((ret = vp4_unpack_macroblocks(s, &gb)) < 0) {
2770  av_log(s->avctx, AV_LOG_ERROR, "error in vp4_unpack_macroblocks\n");
2771  goto error;
2772  }
2773 #endif
2774  }
2775  if ((ret = unpack_modes(s, &gb)) < 0) {
2776  av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
2777  goto error;
2778  }
2779  if (ret = unpack_vectors(s, &gb)) {
2780  av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
2781  goto error;
2782  }
2783  if ((ret = unpack_block_qpis(s, &gb)) < 0) {
2784  av_log(s->avctx, AV_LOG_ERROR, "error in unpack_block_qpis\n");
2785  goto error;
2786  }
2787 
2788  if (s->version < 2) {
2789  if ((ret = unpack_dct_coeffs(s, &gb)) < 0) {
2790  av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
2791  goto error;
2792  }
2793 #if CONFIG_VP4_DECODER
2794  } else {
2795  if ((ret = vp4_unpack_dct_coeffs(s, &gb)) < 0) {
2796  av_log(s->avctx, AV_LOG_ERROR, "error in vp4_unpack_dct_coeffs\n");
2797  goto error;
2798  }
2799 #endif
2800  }
2801 
2802  for (i = 0; i < 3; i++) {
2803  int height = s->height >> (i && s->chroma_y_shift);
2804  if (s->flipped_image)
2805  s->data_offset[i] = 0;
2806  else
2807  s->data_offset[i] = (height - 1) * s->current_frame.f->linesize[i];
2808  }
2809 
2810  s->last_slice_end = 0;
2811  for (i = 0; i < s->c_superblock_height; i++)
2812  render_slice(s, i);
2813 
2814  // filter the last row
2815  if (s->version < 2)
2816  for (i = 0; i < 3; i++) {
2817  int row = (s->height >> (3 + (i && s->chroma_y_shift))) - 1;
2818  apply_loop_filter(s, i, row, row + 1);
2819  }
2820  vp3_draw_horiz_band(s, s->height);
2821 
2822  /* output frame, offset as needed */
2823  if ((ret = av_frame_ref(data, s->current_frame.f)) < 0)
2824  return ret;
2825 
2826  frame->crop_left = s->offset_x;
2827  frame->crop_right = avctx->coded_width - avctx->width - s->offset_x;
2828  frame->crop_top = s->offset_y;
2829  frame->crop_bottom = avctx->coded_height - avctx->height - s->offset_y;
2830 
2831  *got_frame = 1;
2832 
2833  if (!HAVE_THREADS || !(s->avctx->active_thread_type & FF_THREAD_FRAME)) {
2834  ret = update_frames(avctx);
2835  if (ret < 0)
2836  return ret;
2837  }
2838 
2839  return buf_size;
2840 
2841 error:
2842  ff_thread_report_progress(&s->current_frame, INT_MAX, 0);
2843 
2844  if (!HAVE_THREADS || !(s->avctx->active_thread_type & FF_THREAD_FRAME))
2845  av_frame_unref(s->current_frame.f);
2846 
2847  return ret;
2848 }
2849 
2850 static int read_huffman_tree(HuffTable *huff, GetBitContext *gb, int length,
2851  AVCodecContext *avctx)
2852 {
2853  if (get_bits1(gb)) {
2854  int token;
2855  if (huff->nb_entries >= 32) { /* overflow */
2856  av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2857  return -1;
2858  }
2859  token = get_bits(gb, 5);
2860  ff_dlog(avctx, "code length %d, curr entry %d, token %d\n",
2861  length, huff->nb_entries, token);
2862  huff->entries[huff->nb_entries++] = (HuffEntry){ length, token };
2863  } else {
2864  /* The following bound follows from the fact that nb_entries <= 32. */
2865  if (length >= 31) { /* overflow */
2866  av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2867  return -1;
2868  }
2869  length++;
2870  if (read_huffman_tree(huff, gb, length, avctx))
2871  return -1;
2872  if (read_huffman_tree(huff, gb, length, avctx))
2873  return -1;
2874  }
2875  return 0;
2876 }
2877 
2878 #if CONFIG_THEORA_DECODER
2879 static const enum AVPixelFormat theora_pix_fmts[4] = {
2881 };
2882 
2883 static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
2884 {
2885  Vp3DecodeContext *s = avctx->priv_data;
2886  int visible_width, visible_height, colorspace;
2887  uint8_t offset_x = 0, offset_y = 0;
2888  int ret;
2889  AVRational fps, aspect;
2890 
2891  if (get_bits_left(gb) < 206)
2892  return AVERROR_INVALIDDATA;
2893 
2894  s->theora_header = 0;
2895  s->theora = get_bits(gb, 24);
2896  av_log(avctx, AV_LOG_DEBUG, "Theora bitstream version %X\n", s->theora);
2897  if (!s->theora) {
2898  s->theora = 1;
2899  avpriv_request_sample(s->avctx, "theora 0");
2900  }
2901 
2902  /* 3.2.0 aka alpha3 has the same frame orientation as original vp3
2903  * but previous versions have the image flipped relative to vp3 */
2904  if (s->theora < 0x030200) {
2905  s->flipped_image = 1;
2906  av_log(avctx, AV_LOG_DEBUG,
2907  "Old (<alpha3) Theora bitstream, flipped image\n");
2908  }
2909 
2910  visible_width =
2911  s->width = get_bits(gb, 16) << 4;
2912  visible_height =
2913  s->height = get_bits(gb, 16) << 4;
2914 
2915  if (s->theora >= 0x030200) {
2916  visible_width = get_bits(gb, 24);
2917  visible_height = get_bits(gb, 24);
2918 
2919  offset_x = get_bits(gb, 8); /* offset x */
2920  offset_y = get_bits(gb, 8); /* offset y, from bottom */
2921  }
2922 
2923  /* sanity check */
2924  if (av_image_check_size(visible_width, visible_height, 0, avctx) < 0 ||
2925  visible_width + offset_x > s->width ||
2926  visible_height + offset_y > s->height ||
2927  visible_width < 18
2928  ) {
2929  av_log(avctx, AV_LOG_ERROR,
2930  "Invalid frame dimensions - w:%d h:%d x:%d y:%d (%dx%d).\n",
2931  visible_width, visible_height, offset_x, offset_y,
2932  s->width, s->height);
2933  return AVERROR_INVALIDDATA;
2934  }
2935 
2936  fps.num = get_bits_long(gb, 32);
2937  fps.den = get_bits_long(gb, 32);
2938  if (fps.num && fps.den) {
2939  if (fps.num < 0 || fps.den < 0) {
2940  av_log(avctx, AV_LOG_ERROR, "Invalid framerate\n");
2941  return AVERROR_INVALIDDATA;
2942  }
2943  av_reduce(&avctx->framerate.den, &avctx->framerate.num,
2944  fps.den, fps.num, 1 << 30);
2945  }
2946 
2947  aspect.num = get_bits(gb, 24);
2948  aspect.den = get_bits(gb, 24);
2949  if (aspect.num && aspect.den) {
2951  &avctx->sample_aspect_ratio.den,
2952  aspect.num, aspect.den, 1 << 30);
2953  ff_set_sar(avctx, avctx->sample_aspect_ratio);
2954  }
2955 
2956  if (s->theora < 0x030200)
2957  skip_bits(gb, 5); /* keyframe frequency force */
2958  colorspace = get_bits(gb, 8);
2959  skip_bits(gb, 24); /* bitrate */
2960 
2961  skip_bits(gb, 6); /* quality hint */
2962 
2963  if (s->theora >= 0x030200) {
2964  skip_bits(gb, 5); /* keyframe frequency force */
2965  avctx->pix_fmt = theora_pix_fmts[get_bits(gb, 2)];
2966  if (avctx->pix_fmt == AV_PIX_FMT_NONE) {
2967  av_log(avctx, AV_LOG_ERROR, "Invalid pixel format\n");
2968  return AVERROR_INVALIDDATA;
2969  }
2970  skip_bits(gb, 3); /* reserved */
2971  } else
2972  avctx->pix_fmt = AV_PIX_FMT_YUV420P;
2973 
2974  if (s->width < 18)
2975  return AVERROR_PATCHWELCOME;
2976  ret = ff_set_dimensions(avctx, s->width, s->height);
2977  if (ret < 0)
2978  return ret;
2979  if (!(avctx->flags2 & AV_CODEC_FLAG2_IGNORE_CROP)) {
2980  avctx->width = visible_width;
2981  avctx->height = visible_height;
2982  // translate offsets from theora axis ([0,0] lower left)
2983  // to normal axis ([0,0] upper left)
2984  s->offset_x = offset_x;
2985  s->offset_y = s->height - visible_height - offset_y;
2986  }
2987 
2988  if (colorspace == 1)
2990  else if (colorspace == 2)
2992 
2993  if (colorspace == 1 || colorspace == 2) {
2994  avctx->colorspace = AVCOL_SPC_BT470BG;
2995  avctx->color_trc = AVCOL_TRC_BT709;
2996  }
2997 
2998  s->theora_header = 1;
2999  return 0;
3000 }
3001 
3002 static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
3003 {
3004  Vp3DecodeContext *s = avctx->priv_data;
3005  int i, n, matrices, inter, plane, ret;
3006 
3007  if (!s->theora_header)
3008  return AVERROR_INVALIDDATA;
3009 
3010  if (s->theora >= 0x030200) {
3011  n = get_bits(gb, 3);
3012  /* loop filter limit values table */
3013  if (n)
3014  for (i = 0; i < 64; i++)
3015  s->filter_limit_values[i] = get_bits(gb, n);
3016  }
3017 
3018  if (s->theora >= 0x030200)
3019  n = get_bits(gb, 4) + 1;
3020  else
3021  n = 16;
3022  /* quality threshold table */
3023  for (i = 0; i < 64; i++)
3024  s->coded_ac_scale_factor[i] = get_bits(gb, n);
3025 
3026  if (s->theora >= 0x030200)
3027  n = get_bits(gb, 4) + 1;
3028  else
3029  n = 16;
3030  /* dc scale factor table */
3031  for (i = 0; i < 64; i++)
3032  s->coded_dc_scale_factor[0][i] =
3033  s->coded_dc_scale_factor[1][i] = get_bits(gb, n);
3034 
3035  if (s->theora >= 0x030200)
3036  matrices = get_bits(gb, 9) + 1;
3037  else
3038  matrices = 3;
3039 
3040  if (matrices > 384) {
3041  av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n");
3042  return -1;
3043  }
3044 
3045  for (n = 0; n < matrices; n++)
3046  for (i = 0; i < 64; i++)
3047  s->base_matrix[n][i] = get_bits(gb, 8);
3048 
3049  for (inter = 0; inter <= 1; inter++) {
3050  for (plane = 0; plane <= 2; plane++) {
3051  int newqr = 1;
3052  if (inter || plane > 0)
3053  newqr = get_bits1(gb);
3054  if (!newqr) {
3055  int qtj, plj;
3056  if (inter && get_bits1(gb)) {
3057  qtj = 0;
3058  plj = plane;
3059  } else {
3060  qtj = (3 * inter + plane - 1) / 3;
3061  plj = (plane + 2) % 3;
3062  }
3063  s->qr_count[inter][plane] = s->qr_count[qtj][plj];
3064  memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj],
3065  sizeof(s->qr_size[0][0]));
3066  memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj],
3067  sizeof(s->qr_base[0][0]));
3068  } else {
3069  int qri = 0;
3070  int qi = 0;
3071 
3072  for (;;) {
3073  i = get_bits(gb, av_log2(matrices - 1) + 1);
3074  if (i >= matrices) {
3075  av_log(avctx, AV_LOG_ERROR,
3076  "invalid base matrix index\n");
3077  return -1;
3078  }
3079  s->qr_base[inter][plane][qri] = i;
3080  if (qi >= 63)
3081  break;
3082  i = get_bits(gb, av_log2(63 - qi) + 1) + 1;
3083  s->qr_size[inter][plane][qri++] = i;
3084  qi += i;
3085  }
3086 
3087  if (qi > 63) {
3088  av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi);
3089  return -1;
3090  }
3091  s->qr_count[inter][plane] = qri;
3092  }
3093  }
3094  }
3095 
3096  /* Huffman tables */
3097  for (int i = 0; i < FF_ARRAY_ELEMS(s->huffman_table); i++) {
3098  s->huffman_table[i].nb_entries = 0;
3099  if ((ret = read_huffman_tree(&s->huffman_table[i], gb, 0, avctx)) < 0)
3100  return ret;
3101  }
3102 
3103  s->theora_tables = 1;
3104 
3105  return 0;
3106 }
3107 
3108 static av_cold int theora_decode_init(AVCodecContext *avctx)
3109 {
3110  Vp3DecodeContext *s = avctx->priv_data;
3111  GetBitContext gb;
3112  int ptype;
3113  const uint8_t *header_start[3];
3114  int header_len[3];
3115  int i;
3116  int ret;
3117 
3118  avctx->pix_fmt = AV_PIX_FMT_YUV420P;
3119 
3120  s->theora = 1;
3121 
3122  if (!avctx->extradata_size) {
3123  av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n");
3124  return -1;
3125  }
3126 
3128  42, header_start, header_len) < 0) {
3129  av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n");
3130  return -1;
3131  }
3132 
3133  for (i = 0; i < 3; i++) {
3134  if (header_len[i] <= 0)
3135  continue;
3136  ret = init_get_bits8(&gb, header_start[i], header_len[i]);
3137  if (ret < 0)
3138  return ret;
3139 
3140  ptype = get_bits(&gb, 8);
3141 
3142  if (!(ptype & 0x80)) {
3143  av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n");
3144 // return -1;
3145  }
3146 
3147  // FIXME: Check for this as well.
3148  skip_bits_long(&gb, 6 * 8); /* "theora" */
3149 
3150  switch (ptype) {
3151  case 0x80:
3152  if (theora_decode_header(avctx, &gb) < 0)
3153  return -1;
3154  break;
3155  case 0x81:
3156 // FIXME: is this needed? it breaks sometimes
3157 // theora_decode_comments(avctx, gb);
3158  break;
3159  case 0x82:
3160  if (theora_decode_tables(avctx, &gb))
3161  return -1;
3162  break;
3163  default:
3164  av_log(avctx, AV_LOG_ERROR,
3165  "Unknown Theora config packet: %d\n", ptype & ~0x80);
3166  break;
3167  }
3168  if (ptype != 0x81 && 8 * header_len[i] != get_bits_count(&gb))
3169  av_log(avctx, AV_LOG_WARNING,
3170  "%d bits left in packet %X\n",
3171  8 * header_len[i] - get_bits_count(&gb), ptype);
3172  if (s->theora < 0x030200)
3173  break;
3174  }
3175 
3176  return vp3_decode_init(avctx);
3177 }
3178 
3180  .name = "theora",
3181  .long_name = NULL_IF_CONFIG_SMALL("Theora"),
3182  .type = AVMEDIA_TYPE_VIDEO,
3183  .id = AV_CODEC_ID_THEORA,
3184  .priv_data_size = sizeof(Vp3DecodeContext),
3185  .init = theora_decode_init,
3186  .close = vp3_decode_end,
3191  .update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context),
3194 };
3195 #endif
3196 
3198  .name = "vp3",
3199  .long_name = NULL_IF_CONFIG_SMALL("On2 VP3"),
3200  .type = AVMEDIA_TYPE_VIDEO,
3201  .id = AV_CODEC_ID_VP3,
3202  .priv_data_size = sizeof(Vp3DecodeContext),
3203  .init = vp3_decode_init,
3204  .close = vp3_decode_end,
3209  .update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context),
3211 };
3212 
3213 #if CONFIG_VP4_DECODER
3215  .name = "vp4",
3216  .long_name = NULL_IF_CONFIG_SMALL("On2 VP4"),
3217  .type = AVMEDIA_TYPE_VIDEO,
3218  .id = AV_CODEC_ID_VP4,
3219  .priv_data_size = sizeof(Vp3DecodeContext),
3220  .init = vp3_decode_init,
3221  .close = vp3_decode_end,
3226  .update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context),
3228 };
3229 #endif
static void flush(AVCodecContext *avctx)
AVCodec ff_vp4_decoder
AVCodec ff_theora_decoder
#define av_cold
Definition: attributes.h:88
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> dc
uint8_t
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
Definition: avassert.h:53
Libavcodec external API header.
#define FF_THREAD_FRAME
Decode more than one frame at once.
Definition: avcodec.h:1784
#define FF_DEBUG_PICT_INFO
Definition: avcodec.h:1624
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:31
void ff_free_vlc(VLC *vlc)
Definition: bitstream.c:431
int ff_init_vlc_from_lengths(VLC *vlc_arg, int nb_bits, int nb_codes, const int8_t *lens, int lens_wrap, const void *symbols, int symbols_wrap, int symbols_size, int offset, int flags, void *logctx)
Build VLC decoding tables suitable for use with get_vlc2()
Definition: bitstream.c:381
#define u(width, name, range_min, range_max)
Definition: cbs_h2645.c:264
#define bit(string, value)
Definition: cbs_mpeg2.c:58
#define s(width, name)
Definition: cbs_vp9.c:257
#define fail()
Definition: checkasm.h:133
#define FFMIN(a, b)
Definition: common.h:105
#define MKTAG(a, b, c, d)
Definition: common.h:478
#define av_clip
Definition: common.h:122
#define FFMAX(a, b)
Definition: common.h:103
#define RSHIFT(a, b)
Definition: common.h:54
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:72
#define FFSIGN(a)
Definition: common.h:73
#define HAVE_THREADS
Definition: config.h:275
#define CONFIG_GRAY
Definition: config.h:556
#define NULL
Definition: coverity.c:32
static void decode(AVCodecContext *dec_ctx, AVPacket *pkt, AVFrame *frame, FILE *outfile)
Definition: decode_audio.c:71
static AVFrame * frame
perm
Definition: f_perms.c:74
static int loop
Definition: ffplay.c:341
#define AV_NUM_DATA_POINTERS
Definition: frame.h:319
bitstream reader API header.
static unsigned int get_bits_long(GetBitContext *s, int n)
Read 0-32 bits.
Definition: get_bits.h:546
static av_always_inline int get_vlc2(GetBitContext *s, VLC_TYPE(*table)[2], int bits, int max_depth)
Parse a vlc code.
Definition: get_bits.h:797
static int get_bits_left(GetBitContext *gb)
Definition: get_bits.h:849
static void skip_bits_long(GetBitContext *s, int n)
Skips the specified number of bits.
Definition: get_bits.h:291
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:498
static void skip_bits(GetBitContext *s, int n)
Definition: get_bits.h:467
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
Definition: get_bits.h:677
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:219
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:379
static unsigned int show_bits(GetBitContext *s, int n)
Show 1-25 bits.
Definition: get_bits.h:446
#define AV_CODEC_CAP_DRAW_HORIZ_BAND
Decoder can use draw_horiz_band callback.
Definition: codec.h:44
#define AV_CODEC_FLAG_BITEXACT
Use only bitexact stuff (except (I)DCT).
Definition: avcodec.h:333
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators.
Definition: codec.h:52
#define AV_GET_BUFFER_FLAG_REF
The decoder will keep a reference to the frame and may reuse it later.
Definition: avcodec.h:514
#define AV_CODEC_FLAG_GRAY
Only decode/encode grayscale.
Definition: avcodec.h:308
#define AV_CODEC_FLAG2_IGNORE_CROP
Discard cropping information from SPS.
Definition: avcodec.h:371
#define AV_CODEC_CAP_FRAME_THREADS
Codec supports frame-level multithreading.
Definition: codec.h:108
@ AV_CODEC_ID_VP3
Definition: codec_id.h:78
@ AV_CODEC_ID_THEORA
Definition: codec_id.h:79
@ AV_CODEC_ID_VP4
Definition: codec_id.h:295
@ AVDISCARD_ALL
discard all
Definition: avcodec.h:236
@ AVDISCARD_NONKEY
discard all frames except keyframes
Definition: avcodec.h:235
#define AVERROR_DECODER_NOT_FOUND
Decoder not found.
Definition: error.h:52
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Definition: error.h:62
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
#define AVERROR(e)
Definition: error.h:43
void av_frame_unref(AVFrame *frame)
Unreference all the buffers referenced by frame and reset the frame fields.
Definition: frame.c:553
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
Definition: frame.c:443
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
Definition: frame.c:203
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
Definition: frame.c:190
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:215
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:200
#define AV_LOG_INFO
Standard information.
Definition: log.h:205
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:194
int av_reduce(int *dst_num, int *dst_den, int64_t num, int64_t den, int64_t max)
Reduce a fraction.
Definition: rational.c:35
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
Definition: mem.c:237
void * av_mallocz_array(size_t nmemb, size_t size)
Allocate a memory block for an array with av_mallocz().
Definition: mem.c:190
#define DECLARE_ALIGNED(n, t, v)
Declare a variable that is aligned in memory.
Definition: mem.h:117
@ AVMEDIA_TYPE_VIDEO
Definition: avutil.h:201
int av_image_check_size(unsigned int w, unsigned int h, int log_offset, void *log_ctx)
Check if the given dimension of an image is valid, meaning that all bytes of the image can be address...
Definition: imgutils.c:317
@ AV_PICTURE_TYPE_I
Intra.
Definition: avutil.h:274
@ AV_PICTURE_TYPE_P
Predicted.
Definition: avutil.h:275
for(j=16;j >0;--j)
static const int8_t transform[32][32]
Definition: hevcdsp.c:27
av_cold void ff_hpeldsp_init(HpelDSPContext *c, int flags)
Definition: hpeldsp.c:338
cl_device_type type
static VLC_TYPE vlc_tables[VLC_TABLES_SIZE][2]
Definition: imc.c:119
misc image utilities
static void output_plane(const Plane *plane, int buf_sel, uint8_t *dst, ptrdiff_t dst_pitch, int dst_height)
Convert and output the current plane.
Definition: indeo3.c:1028
int i
Definition: input.c:407
#define av_log2
Definition: intmath.h:83
#define FF_CODEC_CAP_ALLOCATE_PROGRESS
Definition: internal.h:76
#define FF_CODEC_CAP_EXPORTS_CROPPING
The decoder sets the cropping fields in the output frames manually.
Definition: internal.h:67
int ff_set_sar(AVCodecContext *avctx, AVRational sar)
Check that the provided sample aspect ratio is valid and set it on the codec context.
Definition: utils.c:99
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
Definition: internal.h:49
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
Definition: utils.c:84
int ff_thread_ref_frame(ThreadFrame *dst, const ThreadFrame *src)
Definition: utils.c:940
av_cold void ff_videodsp_init(VideoDSPContext *ctx, int bpc)
Definition: videodsp.c:38
common internal API header
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
Definition: internal.h:117
#define ONLY_IF_THREADS_ENABLED(x)
Define a function with only the non-default version specified.
Definition: internal.h:156
#define emms_c()
Definition: internal.h:54
version
Definition: libkvazaar.c:326
int stride
Definition: mace.c:144
#define FFALIGN(x, a)
Definition: macros.h:48
const uint8_t ff_zigzag_direct[64]
Definition: mathtables.c:98
static void body(uint32_t ABCD[4], const uint8_t *src, int nblocks)
Definition: md5.c:101
const char data[16]
Definition: mxf.c:142
int av_pix_fmt_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
Definition: pixdesc.c:2601
@ AVCHROMA_LOC_CENTER
MPEG-1 4:2:0, JPEG 4:2:0, H.263 4:2:0.
Definition: pixfmt.h:608
AVPixelFormat
Pixel format.
Definition: pixfmt.h:64
@ AV_PIX_FMT_NONE
Definition: pixfmt.h:65
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:66
@ AV_PIX_FMT_YUV422P
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Definition: pixfmt.h:70
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
Definition: pixfmt.h:71
@ AVCOL_PRI_BT470BG
also ITU-R BT601-6 625 / ITU-R BT1358 625 / ITU-R BT1700 625 PAL & SECAM
Definition: pixfmt.h:465
@ AVCOL_PRI_BT470M
also FCC Title 47 Code of Federal Regulations 73.682 (a)(20)
Definition: pixfmt.h:463
@ AVCOL_TRC_BT709
also ITU-R BT1361
Definition: pixfmt.h:485
@ AVCOL_SPC_BT470BG
also ITU-R BT601-6 625 / ITU-R BT1358 625 / ITU-R BT1700 625 PAL & SECAM / IEC 61966-2-4 xvYCC601
Definition: pixfmt.h:518
static const uint16_t table[]
Definition: prosumer.c:206
void ff_thread_report_progress(ThreadFrame *f, int n, int field)
Notify later decoding threads when part of their reference picture is ready.
FF_ENABLE_DEPRECATION_WARNINGS int ff_thread_get_buffer(AVCodecContext *avctx, ThreadFrame *f, int flags)
Wrapper around get_buffer() for frame-multithreaded codecs.
void ff_thread_await_progress(ThreadFrame *f, int n, int field)
Wait for earlier decoding threads to finish reference pictures.
void ff_thread_finish_setup(AVCodecContext *avctx)
If the codec defines update_thread_context(), call this when they are ready for the next thread to st...
void ff_thread_release_buffer(AVCodecContext *avctx, ThreadFrame *f)
Wrapper around release_buffer() frame-for multithreaded codecs.
#define s1
Definition: regdef.h:38
#define FF_ARRAY_ELEMS(a)
main external API structure.
Definition: avcodec.h:536
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:746
int width
picture width / height.
Definition: avcodec.h:709
int flags2
AV_CODEC_FLAG2_*.
Definition: avcodec.h:623
unsigned int codec_tag
fourcc (LSB first, so "ABCD" -> ('D'<<24) + ('C'<<16) + ('B'<<8) + 'A').
Definition: avcodec.h:561
enum AVColorPrimaries color_primaries
Chromaticity coordinates of the source primaries.
Definition: avcodec.h:1150
AVRational framerate
Definition: avcodec.h:2071
AVRational sample_aspect_ratio
sample aspect ratio (0 if unknown) That is the width of a pixel divided by the height of the pixel.
Definition: avcodec.h:915
enum AVColorSpace colorspace
YUV colorspace type.
Definition: avcodec.h:1164
int coded_height
Definition: avcodec.h:724
enum AVColorTransferCharacteristic color_trc
Color Transfer Characteristic.
Definition: avcodec.h:1157
int flags
AV_CODEC_FLAG_*.
Definition: avcodec.h:616
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
Definition: avcodec.h:637
enum AVChromaLocation chroma_sample_location
This defines the location of chroma samples.
Definition: avcodec.h:1178
enum AVCodecID codec_id
Definition: avcodec.h:546
int extradata_size
Definition: avcodec.h:638
int coded_width
Bitstream width / height, may be different from width/height e.g.
Definition: avcodec.h:724
void * priv_data
Definition: avcodec.h:563
AVCodec.
Definition: codec.h:197
const char * name
Name of the codec implementation.
Definition: codec.h:204
This structure describes decoded (raw) audio or video data.
Definition: frame.h:318
size_t crop_right
Definition: frame.h:681
size_t crop_top
Definition: frame.h:678
size_t crop_left
Definition: frame.h:680
size_t crop_bottom
Definition: frame.h:679
This structure stores compressed data.
Definition: packet.h:346
int size
Definition: packet.h:370
uint8_t * data
Definition: packet.h:369
Rational number (pair of numerator and denominator).
Definition: rational.h:58
int num
Numerator.
Definition: rational.h:59
int den
Denominator.
Definition: rational.h:60
Half-pel DSP context.
Definition: hpeldsp.h:45
Definition: exr.c:93
uint8_t len
Definition: exr.c:94
uint8_t sym
Definition: vp3.c:164
Used to store optimal huffman encoding results.
HuffEntry entries[32]
Definition: vp3.c:168
uint8_t nb_entries
Definition: vp3.c:169
Definition: vlc.h:26
int dc
Definition: vp3.c:157
int type
Definition: vp3.c:158
uint16_t coded_dc_scale_factor[2][64]
Definition: vp3.c:229
VideoDSPContext vdsp
Definition: vp3.c:185
int keyframe
Definition: vp3.c:181
int num_coded_frags[3][64]
number of blocks that contain DCT coefficients at the given level or higher
Definition: vp3.c:263
int macroblock_height
Definition: vp3.c:209
int bounding_values_array[256+2]
Definition: vp3.c:305
VLC motion_vector_vlc
Definition: vp3.c:282
int flipped_image
Definition: vp3.c:188
int8_t(*[2] motion_val)[2]
Definition: vp3.c:226
int theora_header
Definition: vp3.c:174
uint8_t base_matrix[384][64]
Definition: vp3.c:231
int c_superblock_width
Definition: vp3.c:200
int theora_tables
Definition: vp3.c:174
int c_superblock_count
Definition: vp3.c:202
VLC coeff_vlc[5 *16]
Definition: vp3.c:276
ThreadFrame last_frame
Definition: vp3.c:179
ThreadFrame golden_frame
Definition: vp3.c:178
int * kf_coded_fragment_list
Definition: vp3.c:270
int last_slice_end
Definition: vp3.c:189
VLC fragment_run_length_vlc
Definition: vp3.c:279
int offset_x_warned
Definition: vp3.c:224
VLC superblock_run_length_vlc
Definition: vp3.c:278
int chroma_y_shift
Definition: vp3.c:177
VP4Predictor * dc_pred_row
Definition: vp3.c:307
uint32_t coded_ac_scale_factor[64]
Definition: vp3.c:230
int y_superblock_height
Definition: vp3.c:198
int yuv_macroblock_count
Definition: vp3.c:213
int16_t * dct_tokens_base
Definition: vp3.c:254
int fragment_start[3]
Definition: vp3.c:220
ThreadFrame current_frame
Definition: vp3.c:180
int version
Definition: vp3.c:175
uint8_t idct_permutation[64]
Definition: vp3.c:182
int16_t block[64]
Definition: vp3.c:187
AVCodecContext * avctx
Definition: vp3.c:173
int chroma_x_shift
Definition: vp3.c:177
int c_macroblock_height
Definition: vp3.c:212
unsigned char * macroblock_coding
Definition: vp3.c:297
int c_macroblock_width
Definition: vp3.c:211
VLC block_pattern_vlc[2]
Definition: vp3.c:280
uint8_t * edge_emu_buffer
Definition: vp3.c:299
int c_superblock_height
Definition: vp3.c:201
int fragment_width[2]
Definition: vp3.c:216
int num_kf_coded_fragment[3]
Definition: vp3.c:272
int skip_loop_filter
Definition: vp3.c:190
int * coded_fragment_list[3]
Definition: vp3.c:268
int total_num_coded_frags
Definition: vp3.c:264
HuffTable huffman_table[5 *16]
Definition: vp3.c:302
int macroblock_width
Definition: vp3.c:208
uint8_t filter_limit_values[64]
Definition: vp3.c:304
int qps[3]
Definition: vp3.c:192
int fragment_count
Definition: vp3.c:215
int16_t * dct_tokens[3][64]
This is a list of all tokens in bitstream order.
Definition: vp3.c:253
Vp3Fragment * all_fragments
Definition: vp3.c:219
unsigned char * superblock_coding
Definition: vp3.c:205
int macroblock_count
Definition: vp3.c:207
int * nkf_coded_fragment_list
Definition: vp3.c:271
uint8_t qr_count[2][3]
Definition: vp3.c:232
int theora
Definition: vp3.c:174
VLC mode_code_vlc
Definition: vp3.c:281
uint8_t qr_size[2][3][64]
Definition: vp3.c:233
int fragment_height[2]
Definition: vp3.c:217
int y_superblock_width
Definition: vp3.c:197
int16_t qmat[3][2][3][64]
qmat[qpi][is_inter][plane]
Definition: vp3.c:287
uint8_t idct_scantable[64]
Definition: vp3.c:183
HpelDSPContext hdsp
Definition: vp3.c:184
int y_superblock_count
Definition: vp3.c:199
int height
Definition: vp3.c:176
uint8_t offset_y
Definition: vp3.c:223
int superblock_count
Definition: vp3.c:196
uint16_t qr_base[2][3][64]
Definition: vp3.c:234
uint8_t offset_x
Definition: vp3.c:222
VP3DSPContext vp3dsp
Definition: vp3.c:186
int last_qps[3]
Definition: vp3.c:194
int v_superblock_start
Definition: vp3.c:204
int data_offset[3]
Definition: vp3.c:221
VLC vp4_mv_vlc[2][7]
Definition: vp3.c:283
int * superblock_fragments
Definition: vp3.c:293
int c_macroblock_count
Definition: vp3.c:210
int u_superblock_start
Definition: vp3.c:203
uint8_t qpi
Definition: vp3.c:62
int16_t dc
Definition: vp3.c:60
uint8_t coding_method
Definition: vp3.c:61
#define av_malloc_array(a, b)
#define ff_dlog(a,...)
#define avpriv_request_sample(...)
#define av_freep(p)
#define av_malloc(s)
#define av_log(a,...)
static void error(const char *err)
#define src
Definition: vp8dsp.c:255
static int16_t block[64]
Definition: dct.c:116
#define height
#define width
static const uint8_t *const tables[]
static const struct twinvq_data tab
else temp
Definition: vf_mcdeint.c:259
if(ret< 0)
Definition: vf_mcdeint.c:282
static const double coeff[2][5]
Definition: vf_owdenoise.c:73
static const uint8_t offset[127][2]
Definition: vf_spp.c:107
Core video DSP helper functions.
#define init_vlc(vlc, nb_bits, nb_codes, bits, bits_wrap, bits_size, codes, codes_wrap, codes_size, flags)
Definition: vlc.h:38
#define VLC_TYPE
Definition: vlc.h:24
static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
#define SB_FULLY_CODED
Definition: vp3.c:67
static int unpack_block_qpis(Vp3DecodeContext *s, GetBitContext *gb)
Definition: vp3.c:1100
#define CODING_MODE_COUNT
Definition: vp3.c:82
#define MODE_INTRA
Definition: vp3.c:75
#define DC_COEFF(u)
Definition: vp3.c:1640
#define MODE_GOLDEN_MV
Definition: vp3.c:80
#define BLOCK_X
Definition: vp3.c:643
static av_cold int vp3_decode_init(AVCodecContext *avctx)
Definition: vp3.c:2322
#define COMPATIBLE_FRAME(x)
Definition: vp3.c:1638
#define PU
static void init_loop_filter(Vp3DecodeContext *s)
Definition: vp3.c:459
#define MODE_INTER_PRIOR_LAST
Definition: vp3.c:78
static int get_eob_run(GetBitContext *gb, int token)
Definition: vp3.c:1143
static void reverse_dc_prediction(Vp3DecodeContext *s, int first_fragment, int fragment_width, int fragment_height)
Definition: vp3.c:1642
#define TOKEN_EOB(eob_run)
Definition: vp3.c:255
static void init_dequantizer(Vp3DecodeContext *s, int qpi)
Definition: vp3.c:416
static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
Definition: vp3.c:902
static av_cold int allocate_tables(AVCodecContext *avctx)
Allocate tables for per-frame data in Vp3DecodeContext.
Definition: vp3.c:2267
#define MODE_COPY
Definition: vp3.c:85
static int vp4_get_mv(Vp3DecodeContext *s, GetBitContext *gb, int axis, int last_motion)
Definition: vp3.c:891
@ VP4_DC_GOLDEN
Definition: vp3.c:140
@ VP4_DC_INTER
Definition: vp3.c:139
@ VP4_DC_UNDEFINED
Definition: vp3.c:142
@ VP4_DC_INTRA
Definition: vp3.c:138
@ NB_VP4_DC_TYPES
Definition: vp3.c:141
static av_cold void free_tables(AVCodecContext *avctx)
Definition: vp3.c:314
static void vp3_decode_flush(AVCodecContext *avctx)
Definition: vp3.c:330
#define MODE_INTER_LAST_MV
Definition: vp3.c:77
#define PL
#define VP3_MV_VLC_BITS
Definition: vp3.c:52
#define MAXIMUM_LONG_BIT_RUN
Definition: vp3.c:72
static void render_slice(Vp3DecodeContext *s, int slice)
Definition: vp3.c:2067
#define MODE_INTER_FOURMV
Definition: vp3.c:81
#define VP4_MV_VLC_BITS
Definition: vp3.c:53
#define SB_PARTIALLY_CODED
Definition: vp3.c:66
#define PUL
static int read_huffman_tree(HuffTable *huff, GetBitContext *gb, int length, AVCodecContext *avctx)
Definition: vp3.c:2850
static const uint8_t vp4_pred_block_type_map[8]
Definition: vp3.c:145
#define SUPERBLOCK_VLC_BITS
Definition: vp3.c:54
#define SB_NOT_CODED
Definition: vp3.c:65
static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
Definition: vp3.c:788
#define BLOCK_Y
Definition: vp3.c:644
static av_cold int vp3_decode_end(AVCodecContext *avctx)
Definition: vp3.c:342
static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
Definition: vp3.c:1300
#define MODE_USING_GOLDEN
Definition: vp3.c:79
static int init_block_mapping(Vp3DecodeContext *s)
This function sets up all of the various blocks mappings: superblocks <-> fragments,...
Definition: vp3.c:382
#define MODE_INTER_PLUS_MV
Definition: vp3.c:76
#define SET_CHROMA_MODES
static const int ModeAlphabet[6][CODING_MODE_COUNT]
Definition: vp3.c:92
#define MODE_INTER_NO_MV
Definition: vp3.c:74
#define PUR
static int vp3_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt)
Definition: vp3.c:2592
static int get_coeff(GetBitContext *gb, int token, int16_t *coeff)
Definition: vp3.c:1151
static void apply_loop_filter(Vp3DecodeContext *s, int plane, int ystart, int yend)
Definition: vp3.c:1792
AVCodec ff_vp3_decoder
Definition: vp3.c:3197
#define TRANSPOSE(x)
#define TOKEN_COEFF(coeff)
Definition: vp3.c:257
static int update_frames(AVCodecContext *avctx)
Release and shuffle frames after decode finishes.
Definition: vp3.c:2510
static const uint8_t hilbert_offset[16][2]
Definition: vp3.c:130
static int vp3_dequant(Vp3DecodeContext *s, Vp3Fragment *frag, int plane, int inter, int16_t block[64])
Pull DCT tokens from the 64 levels to decode and dequant the coefficients for the next block in codin...
Definition: vp3.c:1859
static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb, VLC *table, int coeff_index, int plane, int eob_run)
Definition: vp3.c:1179
#define TOKEN_ZERO_RUN(coeff, zero_run)
Definition: vp3.c:256
static void await_reference_row(Vp3DecodeContext *s, Vp3Fragment *fragment, int motion_y, int y)
Wait for the reference frame of the current fragment.
Definition: vp3.c:1946
static void vp3_draw_horiz_band(Vp3DecodeContext *s, int y)
called when all pixels up to row y are complete
Definition: vp3.c:1904
static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
Definition: vp3.c:468
#define FRAGMENT_PIXELS
Definition: vp3.c:56
static av_cold int init_frames(Vp3DecodeContext *s)
Definition: vp3.c:2310
static const uint8_t zero_run_get_bits[32]
Definition: vp3data.h:153
static const uint8_t vp31_filter_limit_values[64]
Definition: vp3data.h:87
uint8_t bits
Definition: vp3data.h:141
static const uint16_t vp31_ac_scale_factor[64]
Definition: vp3data.h:76
static const uint8_t mode_code_vlc_len[8]
Definition: vp3data.h:110
static const uint8_t zero_run_base[32]
Definition: vp3data.h:146
static const int8_t fixed_motion_vector_table[64]
Definition: vp3data.h:128
static const int16_t *const coeff_tables[32]
Definition: vp3data.h:345
static const uint8_t vp31_dc_scale_factor[64]
Definition: vp3data.h:65
static const uint8_t vp3_bias[5 *16][32][2]
Definition: vp3data.h:383
static const uint8_t fragment_run_length_vlc_len[30]
Definition: vp3data.h:105
static const uint8_t vp31_intra_y_dequant[64]
Definition: vp3data.h:29
static const uint8_t vp31_inter_dequant[64]
Definition: vp3data.h:54
static const uint8_t vp31_intra_c_dequant[64]
Definition: vp3data.h:42
uint8_t base
Definition: vp3data.h:141
static const struct @167 eob_run_table[7]
static const uint8_t coeff_get_bits[32]
Definition: vp3data.h:161
static const uint8_t motion_vector_vlc_table[63][2]
Definition: vp3data.h:114
static const uint8_t superblock_run_length_vlc_lens[34]
Definition: vp3data.h:98
void ff_vp3dsp_set_bounding_values(int *bounding_values_array, int filter_limit)
Definition: vp3dsp.c:473
av_cold void ff_vp3dsp_init(VP3DSPContext *c, int flags)
Definition: vp3dsp.c:445
void ff_vp3dsp_h_loop_filter_12(uint8_t *first_pixel, ptrdiff_t stride, int *bounding_values)
void ff_vp3dsp_v_loop_filter_12(uint8_t *first_pixel, ptrdiff_t stride, int *bounding_values)
VP4 video decoder.
static const uint8_t vp4_mv_vlc[2][7][63][2]
Definition: vp4data.h:112
static const uint8_t vp4_filter_limit_values[64]
Definition: vp4data.h:75
static const uint8_t vp4_uv_dc_scale_factor[64]
Definition: vp4data.h:53
static const uint8_t vp4_block_pattern_table_selector[14]
Definition: vp4data.h:86
static const uint8_t vp4_mv_table_selector[32]
Definition: vp4data.h:105
static const uint8_t vp4_block_pattern_vlc[2][14][2]
Definition: vp4data.h:90
static const uint16_t vp4_ac_scale_factor[64]
Definition: vp4data.h:64
static const uint8_t vp4_bias[5 *16][32][2]
Definition: vp4data.h:329
static const uint8_t vp4_generic_dequant[64]
Definition: vp4data.h:31
static const uint8_t vp4_y_dc_scale_factor[64]
Definition: vp4data.h:42
int avpriv_split_xiph_headers(const uint8_t *extradata, int extradata_size, int first_header_size, const uint8_t *header_start[3], int header_len[3])
Split a single extradata buffer into the three headers that most Xiph codecs use.
Definition: xiph.c:24